Clays and Clay Minerals

, Volume 52, Issue 4, pp 432–442 | Cite as

On the mechanisms of apophyllite alteration in aqueous solutions. A combined AFM, XPS and MAS NMR study

  • Kirill Aldushin
  • Guntram JordanEmail author
  • Michael Fechtelkord
  • Wolfgang W. Schmahl
  • Hans-Werner Becker
  • Werner Rammensee


Apophyllite, a hydrous K-Ca-phyllosilicate, reacts with acidic aqueous solutions at room temperature. Various analytical methods have been applied to study the mechanism of the reaction and its characteristics, i.e. the changes in chemical composition, modifications in crystal structure and alterations in surface morphology. In contact with acidic solution, protonation of the terminal, non-bridging oxygen at the silicate tetrahedra takes place and the interlayer cations K+ and Ca2+ are removed. The protonation and ion removal causes the interlayer spacing to increase. Atomic force microscopy shows that the increase takes place discontinuously and, therefore, reflects a discontinuous reaction that comprises a two- or three-step protonation. Additionally, three structurally different protonation sites have been detected by nuclear magnetic resonance spectroscopy which also differ in the amount of close-by hydrogen, although in pristine apophyllite all terminal oxygen positions at silicate tetrahedra are structurally equivalent. In many clay minerals such structurally different protonation sites have not been detected so far. Thus, the multi-step protonation process in apophyllite clearly demonstrates the vast sensitivity of the protonation reaction on small structural variations in phyllosilicates.

Key Words

Acidic Leaching Apophyllite Atomic Force Microscopy Cation Exchange Crystalline Silicic Acid Dissolution Nuclear Magnetic Resonance Spectroscopy Phyllosilicates Surface Alteration Swelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldushin, K., Jordan, G., Rammensee, W., Schmahl, W.W. and Becker, H.-W. (2004) Apophyllite (001) surface alteration inaqueous solutions studied by HAFM. Geochimica et Cosmochimica Acta, 68, 217–226.CrossRefGoogle Scholar
  2. Astilleros, J.M., Pina, C.M., Fernandez-Diaz, L. and Putnis, A. (2002) Molecular-scale surface processes during the growth of calcite in the presence of manganese. Geochimica et Cosmochimica Acta, 66, 3177–3189.CrossRefGoogle Scholar
  3. Aznar, A.J., Gutierrez, E., Diaz, P., Alvarez, A. and Poncelet, G. (1996) Silica from sepiolite: Preparation, textural properties, and use as support to catalysts. Microporous Materials, 6, 105–114.CrossRefGoogle Scholar
  4. Bickmore, B.R., Bosbach, D., Hochella, Jr., M.F., Charlet, L. and Rufe, E. (2001) In situ atomic force microscopy study of hectorite and nontronite dissolution: Implications for phyllosilicate edge surface structures and dissolution mechanisms. American Mineralogist, 86, 411–423.CrossRefGoogle Scholar
  5. Bickmore, B.R., Rosso, K.M., Nagy, K.L., Cygan, R.T. and Tadanier, C.J. (2003) Ab initio determination of edge surface structures for dioctahedral 2:1 phyllosilicates: Implications for acid-base reactivity. Clays and Clay Minerals, 51, 359–371.CrossRefGoogle Scholar
  6. Bickmore, B.R., Tadanier, C.J., Rosso, K.M., Monn, W.D. and Eggett, L.D. (2004) Bond-valence methods for pKa prediction: Critical reanalysis and a new approach. Geochimica et Cosmochimica Acta, 68, 2025–2042.CrossRefGoogle Scholar
  7. Bosbach, D., Charlet, L., Bickmore, B. and Hochella, Jr., M.F., (2000) The dissolution of hectorite: In-situ, real-time observations using atomic force microscopy. American Mineralogist, 85, 1209–1216.CrossRefGoogle Scholar
  8. Brandt, F., Bosbach, D., Krawczyk-Barsch, E., Arnold, T. and Bernhard, G. (2003) Chlorite dissolution in the acid pH-range: A combined microscopic and macroscopic approach. Geochimica et Cosmochimica Acta, 67, 1451–1461.CrossRefGoogle Scholar
  9. Cave, L.C. (2002) Apophyllite weathering and the aqueous geochemistry of a Karoo breccia pipe. PhD thesis, Department of Geological Sciences, University of Cape Town, Republic of South Africa.Google Scholar
  10. Colville, A.A., Anderson, C.P. and Black, P.M. (1971) Refinement of the crystal structure of apophyllite, I. X-ray diffraction and physical properties. American Mineralogist, 56, 1222–1233.Google Scholar
  11. Corma, A. and Perez-Periente, J. (1987) Surface acidity and activity of modified sepiolite. Clay Minerals, 22, 423–433.CrossRefGoogle Scholar
  12. Deuster, V., Schick, M., Kayser, T., Dabringhaus, H., Klapper, H. and Wandelt, K. (2003) Studies of the facetting of the polished (100) face of CaF2. Journal of Crystal Growth, 250, 313–323.CrossRefGoogle Scholar
  13. Duckworth, O.W. and Martin, S.T. (2003) Connections between surface complexation and geometric models of mineral dissolution investigated for rhodochrosite. Geochimica et Cosmochimica Acta, 67, 1787–1801.CrossRefGoogle Scholar
  14. Fechtelkord, M., Behrens, B., Holtz, F., Fyfe, C.A., Groat, L.A. and Raudsepp, M. (2003) Influence of F content on the composition of Al-rich synthetic phlogopite: Part I. New information on structure and phase-formation from 29Si, 1H, and 19F MAS NMR spectroscopies. American Mineralogist, 88, 47–53.CrossRefGoogle Scholar
  15. Frondel, C. (1979) Crystalline silica hydrates from leached silicates. American Mineralogist, 64, 799–804.Google Scholar
  16. Higgins, S.R., Jordan, G. and Eggleston, C.M. (2002) Dissolution kinetics of magnesite in acidic aqueous solution: a hydrothermal atomic force microscopy study assessing step kinetics and dissolution flux. Geochimica et Cosmochimica Acta, 66, 3201–3210.CrossRefGoogle Scholar
  17. Jordan, G. and Rammensee, W. (1998) Dissolution rates of calcite (10-14) obtained by scanning force microscopy: Microtopography-based dissolution kinetics on surfaces with anisotropic step velocities. Geochimica et Cosmochimica Acta, 62, 941–947.CrossRefGoogle Scholar
  18. Jordan, G., Higgins, S.R., Eggleston, C.M., Swapp, S.M., Janney, D.E. and Knauss, K.G. (1999) Acidic dissolution of plagioclase. In-situ observations by hydrothermal atomic force microscopy. Geochimica et Cosmochimica Acta, 63, 3183–3191.CrossRefGoogle Scholar
  19. Jordan, G., Higgins, S.R., Eggleston, C.M., Knauss, K.G. and Schmahl, W.W. (2001) Dissolution kinetics of magnesite in acidic aqueous solution, a hydrothermal atomic force microscopy (HAFM) study: Step orientation and kink dynamics. Geochimica et Cosmochimica Acta, 65, 4257–4266.CrossRefGoogle Scholar
  20. Kaviratna, H. and Pinnavaia, T.J. (1994) Acid hydrolysis of octahedral Mg2+ sites in2:l layered silicates: an assessment of edge attack and gallery access mechanisms. Clays and Clay Minerals, 42, 717–723.CrossRefGoogle Scholar
  21. Komadel, P., Madejová, J., Janek, M., Gates, W.P., Kirkpatrick, R.J. and Stucki J.W. (1996) Dissolution of hectorite in inorganic acids. Clays and Clay Minerals, 44, 228–236.CrossRefGoogle Scholar
  22. Kosuge, K., Shimada, K. and Tsunashima, A. (1995) Micropore formation by acid treatment of antigorite. Chemical Materials, 7, 2241–2246.CrossRefGoogle Scholar
  23. Lagaly, G. and Matouschek, R. (1980) The crystalline silicic acids from apophyllite, carletonite and gillespite. Neues Jahrbuch für Mineralogie Abhandlungen, 138, 81–93.Google Scholar
  24. Lagaly, G., Beneke, K. and Weiss, A. (1975) Magadiite and H-Magadiite: II. H-Magadiite and its intercalation compounds. American Mineralogist, 60, 650–658.Google Scholar
  25. Liang, Y., Baer, D.R., McCoy, J.M., Amonette, J.E. and LaFemina, J.P. (1996) Dissolution kinetics at the calcite-water interface. Geochimica et Cosmochimica Acta, 60, 4883–4887.CrossRefGoogle Scholar
  26. Liu, C., Li, X.Y., Xu, F.L. and Huang, P.M. (2003) Atomic force microscopy of soil inorganic colloids. Soil Science and Plant Nutrition, 49, 17–23.CrossRefGoogle Scholar
  27. Nagy, K.L., Blum, A.E. and Lasaga, A.C. (1991) Dissolution and precipitation of kaolinite at 80°C and pH 3: The dependence on solution saturation state. American Journal of Science, 291, 649–686.CrossRefGoogle Scholar
  28. Okada, K., Nakazawa, N., Kameshima, Y., Yasumori, A., Temuujin, J., MacKenzie, K.J.D. and Smith, M.E. (2002) Preparation and porous properties of materials prepared by selective leaching of phlogopite. Clays and Clay Minerals, 50, 624–632.CrossRefGoogle Scholar
  29. Pabst, A. (1958) The crystal structure of leached gillespite, a sheet silicate. American Mineralogist, 43, 970–980.Google Scholar
  30. Peskleway, C.D., Henderson, G.S. and Wicks, F.J. (2003) Dissolution of gibbsite: Direct observations using fluid cell atomic force microscopy. American Mineralogist, 88, 18–26.CrossRefGoogle Scholar
  31. Ravichandran, J. and Sivasankar, B. (1997) Properties and catalytic activity of acid-modified montmorillonite and vermiculite. Clays and Clay Minerals, 45, 854–858.CrossRefGoogle Scholar
  32. Rodriguez, M.A.V., Gonzalez, J.D.L. and Munoz, M.A.B. (1994) Acid activation of a Spanish sepiolite: physicochemical characterization, free silica content and surface area of products obtained. Clay Minerals, 29, 361–367.CrossRefGoogle Scholar
  33. Saito, Y., Motohashi, T., Hayashi, S., Yasumori, A. and Okada, K. (1997) High thermal resistance of gamma-Al2O3 prepared by the selective leaching of calcined kaolin minerals. Journal of Materials Chemistry, 7, 1615–1621.CrossRefGoogle Scholar
  34. Shiraki, R., Rock, P.A. and Casey, W.H. (2000) Dissolution kinetics of calcite in 0.1 M NaCl solution at room temperature: Anatomic force microscopic (AFM) study. Aquatic Geochemistry, 6, 87–108.CrossRefGoogle Scholar
  35. Sogo, Y., Iizuka, F. and Yamazaki, A. (1998) Preparation and properties of layered silica and layered alumino-silica hydrate from natural apophyllite. Journal of the Ceramic Society of Japan, 106, 160–168.CrossRefGoogle Scholar
  36. Temuujin, J., Burmaa, G., Amgalan, J., Okada, K., Jadambaa, T. and MacKenzie K.J.D. (2001) Preparation of porous silica from mechanically activated kaolinite. Journal of Porous Materials, 8, 233–238.CrossRefGoogle Scholar
  37. Teng, H.H., Fenter, P., Cheng, L.W. and Sturchio N.C. (2001) Resolving orthoclase dissolution processes with atomic force microscopy and X-ray reflectivity. Geochimica et Cosmochimica Acta, 65, 3459–3474.CrossRefGoogle Scholar
  38. Tossell, J.A. and Sahai N. (2000) Calculating the acidity of silanols and related oxyacids in aqueous solution. Geochimica et Cosmochimica Acta, 64, 4097–4113.CrossRefGoogle Scholar
  39. Walther, J.V. (1996) Relation between rates of aluminosilicate mineral dissolution, pH, temperature, and surface charge. American Journal of Science, 296, 693–728.CrossRefGoogle Scholar
  40. Wieland, E. and Stumm, W. (1992) Dissolution kinetics of kaolinite in acidic aqueous solutions at 25°C. Geochimica et Cosmochimica Acta, 56, 3339–3355.CrossRefGoogle Scholar
  41. Yesinowski, J.P., Eckert, H. and Rossman, G.R. (1988) Characterization of hydrous species inminerals by highspeed lH MAS-NMR. Journal of the American Chemical Society, 110, 1367–1375.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 2004

Authors and Affiliations

  • Kirill Aldushin
    • 1
    • 2
  • Guntram Jordan
    • 1
    Email author
  • Michael Fechtelkord
    • 1
  • Wolfgang W. Schmahl
    • 1
  • Hans-Werner Becker
    • 3
  • Werner Rammensee
    • 2
  1. 1.Institut für Geologie, Mineralogie und GeophysikRuhr-Universität BochumBochumGermany
  2. 2.Institut für Mineralogie und GeochemieUniversität zu KölnKölnGermany
  3. 3.Institut fur Physik mit Ionenstrahlung (Exp. Physik III)Ruhr-Universität BochumBochumGermany

Personalised recommendations