Clays and Clay Minerals

, Volume 48, Issue 2, pp 256–265 | Cite as

Chlorite, Corrensite, and Chlorite-Mica in Late Jurassic Fluvio-Lacustrine Sediments of the Cameros Basin of Northeastern Spain

  • José F. BarrenecheaEmail author
  • Magdalena Rodas
  • Martin Frey
  • Jacinto Alonso-Azcárate
  • José Ramón Mas


The distribution and crystal-chemical characteristics of chlorite, corrensite, and mica in samples from a stratigraphic profile in the Cameros basin are controlled by changes in the sedimentary facies. The lacustrine marls and limestones from the base and the top of the profile contain quartz + calcite + illite ± dolomite ± chlorite ± albite ± paragonite ± Na, K-rich mica. Chlorite is rich in Mg, with Fe/(Fe + Mg) ratios ranging between 0.18–0.37. A formation mechanism involving reaction between Mg-rich carbonate and dioctahedral phyllosilicates is proposed for these Mg-rich chlorites, on the basis of the mutually exclusive relationship found between Mg-rich chlorite and dolomite, together with the relative increase in the proportion of calcite in samples containing chlorite.

The mudrocks from the middle part of the profile are composed of quartz + albite + illite + corrensite (with a mean coefficient of variability of 0.60%) ± chlorite. Corrensite and chlorite are richer in Fe2+ than those from the base or top of the profile, with mean Fe/(Fe + Mg) ratios of 0.51 and 0.56, respectively. Textural and compositional features suggest a formation mechanism for the corrensite, chlorite, and chlorite-mica crystals through replacement of detrital igneous biotite. Whether or not corrensite occurs with chlorite appears to be related to redox conditions. The presence of corrensite alone is apparently favored by oxidizing conditions, whereas the occurrence of corrensite + chlorite is related to more reducing conditions. Corrensite shows higher Si and Na + K + Ca contents, and slightly lower Fe/(Fe + Mg) ratios than chlorite. The presence of corrensite and the lack of random chlorite-smectite interlayering is discussed in terms of the fluid/rock ratio; the occurrence is related to the hydrothermal character of metamorphism in the Cameros basin.

Key Words

Cameros Basin Chlorite Chlorite-Mica Corrensite EMPA Low-Grade Metamorphism Sedimentary Facies Spain XRD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almon, W.R., Fullerton, L.B., and Davies, D.K. (1976) Pore space reduction in Cretaceous sandstones through chemical precipitation of clay minerals. Journal of Sedimentary Petrology, 46, 89–96.Google Scholar
  2. Alonso-Azcarate, J., Barrenechea, J.F., Rodas, M., and Mas, J.R. (1995) Comparative study of the transition between very low grade and low grade metamorphism in siliciclastic and carbonate sediments. Early Cretaceous, Cameros Basin (North Spain). Clay Minerals, 30, 407–419.CrossRefGoogle Scholar
  3. Alonso-Azcárate, J., Rodas, M., Bottrell, S.H., Raiswell, R., Velasco, F., and Mas, J.R. (1999) Pathways and distances of fluid flow during low-grade metamorphism: Evidence from pyrite deposits of the Cameros Basin, Spain. Journal of Metamorphic Geology, 17, 339–348.CrossRefGoogle Scholar
  4. April, R.H. (1981) Trioctahedral smectite and interstratified chlorite/smectite in Jurassic strata of the Conneticut Valley. Clays and Clay Minerals, 29, 31–39.CrossRefGoogle Scholar
  5. Bailey, S.W. (1982) Nomenclature for regular interstratifications. American Mineralogist, 67, 394–398.Google Scholar
  6. Barrenechea, J.F., Rodas, M., and Mas, J.R. (1995) Clay mineral variation associated with diagenesis and low grade metamorphism of Early Creataceous sediments in the Cameros Basin, Spain. Clay Minerals, 30, 119–133.CrossRefGoogle Scholar
  7. Bettison-Varga, L. and Mackinnon, I.D.R. (1997) The role of randomly mixed-layered chlorite/smectite in the transformation of smectite to chlorite. Clays and Clay Minerals. 45, 506–516.CrossRefGoogle Scholar
  8. Bettison-Varga, L., Mackinnon, I.D.R., and Schiffman, P. (1991) Integrated TEM, XRD and microprobe investigation of mixed-layered chlorite/smectite from the Point Sal Ophiolite, California. Journal of Metamorphic Geology, 9, 711–721.CrossRefGoogle Scholar
  9. Bodine, M.W. and Madsen, B.M. (1987) Mixed-layer chlorite/smectites from a Pennsylvanian evaporite cycle, Grand County, Utah. In Proceedings of the International Clay Conference Denver, 1985, L.G. Schultz, H. van Olphen, and F.A. Mumpton, eds., The Clay Minerals Society, Denver, Colorado, 85–93.Google Scholar
  10. Brigatti, M.F. and Poppi, L. (1984) Crystal chemistry of corrensite: A review. Clays and Clay Minerals, 32, 391–399.CrossRefGoogle Scholar
  11. Caillère, S., Henin, S., and Rautereau, M. (1982) Minèralogie des Argiles. I. Structure et Priopiétés Physica Chimiques. Masson ed., Paris, 184 pp.Google Scholar
  12. Casquet, C., Galindo, C., González Casado, J.M., Alonso, A., Mas, J.R., Rodas, M., García, E., and Barrenechea, J.F. (1992) El metamorfismo en la Cuenca de los Cameros. Geocronologia e implicaciones tectónicas. Geogaceta, 11, 22–25.Google Scholar
  13. Chang, H.K., Mackenzie, F.T., and Schoonmaker, J. (1986) Comparisons between the diagenesis of dioctahedral and trioctahedral smectite, Brazilian offshore basins. Clays and Clay Minerals, 34, 407–423.CrossRefGoogle Scholar
  14. Frey, M. (1987) Very low-grade metamorphism of clastic sedimentary rocks. In Low-Temperature Metamorphism, M. Frey, ed., Blackie and Sons, Glasgow, 9–58.Google Scholar
  15. Gómez Fernández, J.C. (1993) Análisis de la Cuenca sedimentaria de los Cameros durante sus etapas iniciales de relleno en relación con su evolución paleogeográfica. Ph.D. thesis, Universidad Complutense de Madrid, 343 pp.Google Scholar
  16. Guimerá, J., Alonso, A., and Mas, J.R. (1995) Inversion of an extensional-ramp basin by a neoformed thrust: The Cameros basin (N Spain). In Basin Inversion, J.G. Buchanan and P.G. Buchanan, eds., Geological Society Special Publication 88, London, 433–453.Google Scholar
  17. Guiraud, M. (1983) Evolution tectono-sédimentaire du basin Wealdien (Crétacé inférieur) en relais de décrochements de Logroño-Soria (NW Espagne). Ph.D. thesis, Université des Sciences et Techniques de Languedoc, Montpellier, 183 pp.Google Scholar
  18. Hillier, S. (1993) Origin, diagenesis, and mineralogy of chlorite minerals in Devonian lacustrine mudrocks, Orcadian Basin, Scotland. Clays and Clay Minerals, 41, 240–259.CrossRefGoogle Scholar
  19. Hillier, S. (1995) Mafic phyllosilicates in low-grade metabasites. Characterization using deconvolution analysis—Discussion. Clay Minerals. 30, 67–73.CrossRefGoogle Scholar
  20. Hutcheon, I., Oldershaw, A., and Ghent, E.D. (1980) Diagenesis of Cretaceous sandstones of the Kootenay Formation at Elk Valley (Southeast British Columbia) and Mt. Allan (Southwest Alberta). Geochimica et Cosmochimica Acta, 44, 1425–1435.CrossRefGoogle Scholar
  21. Inoue, A. (1985) Chemistry of corrensite: A trend in composition of trioctahedral chlorite/smectite during diagenesis. Journal of the College of Arts and Sciences, Chiba University, B-18, 69–82.Google Scholar
  22. Jiang, W.T. and Peacor, D.R. (1994a) Formation of corrensite, chlorite and chlorite-mica stacks by replacement of detrital biotite in low-grade pelitic rocks. Journal of Metamorphic Geology, 12, 867–884.CrossRefGoogle Scholar
  23. Jiang, W.T. and Peacor, D.R. (1994b) Prograde transitions of corrensite and chlorite in low-grade pelitic rocks from the Gaspé Peninsula, Quebec. Clays and Clay Minerals, 42, 497–517.CrossRefGoogle Scholar
  24. Jiang, W.T., Peacor, D.R., and Buseck, P.R. (1994) Chlorite geothermometry?—Contamination and apparent octahedral vacancies. Clays and Clay Minerals, 42, 593–605.CrossRefGoogle Scholar
  25. Kubler, B. (1967) La cristallinité de l’illite et les zones tout á fait supérieures du métamorphisme. Etages Techtoniques, Coll Neuchâtel, 105–122.Google Scholar
  26. Li, G., Peacor, D.R., and Essene, E.J. (1998) The formation of sulfides during alteration of biotite to chlorite-corrensite. Clays and Clay Minerals, 46, 649–657.CrossRefGoogle Scholar
  27. Mas, J.R., Alonso, A., and Guimera, J. (1993) Evolución tectonosedimentaria de una cuenca extensional intraplaca: La cuenca finijurásica-eocretácica de Los Cameros (La Rioja-Soria). Revista de la Sociedad Geológica de España, 6, 129–144.Google Scholar
  28. Mata, M.P., López-Aguayo, F., Gil-Imaz, A., and Pocoví, A. (1999) Intercrecimientos de filosilicatos en la Cuenca de Cameros y su relación con la génesis de la esquistosidad en la etapa metamórfica de bajo grado. Geogaceta, 24, 227–230.Google Scholar
  29. Meunier, A., Clement, J.I., Bouchet, A., and Beaufort, D. (1988) Chlorite-calcite and corrensite-dolomite crystallization during two superimposed events of hydrothermal alteration in the “Les Crêtes” granite, Vosgues, France. Canadian Mineralogist, 26, 413–426.Google Scholar
  30. Roberson, H.E., Reynolds, R.C., Jr., and Jenkins, D.M. (1999) Hydrothermal synthesis of corrensite: A study of the transformation of saponite to corrensite. Clays and Clay Minerals, 47, 212–218.CrossRefGoogle Scholar
  31. Santos, G. and Blanco, J.A. (1993) Paleosuelos y paleoalteraciones del Weald de la zona oeste de la Cuenca de Cameros (borde SW de la Sierra de la Demanda). Cuadernos de Geología Ibérica, 17, 185–206.Google Scholar
  32. Schiffman, P. and Staudigel, H. (1995) The smectite to chlorite transition in a fossil seamount hydrothermal system: The basement complex of La Palma, Canary Islands. Journal of Metamorphic Geology, 13, 487–498.CrossRefGoogle Scholar
  33. Schmidt, S.Th. and Robinson, D. (1997) Metamorphic grade and porosity and permeability controls on mafic phyllosilicate distributions in a regional zeolite to greenschist facies transition of the North Shore Volcanic Group, Minnesota. Geological Society of America Bulletin, 109, 683–697.CrossRefGoogle Scholar
  34. Shau, Y.H. and Peacor, D.R. (1992) Phyllosilicates in hydrothermally altered basalts from DSDP Hole 504B, Leg 83— a TEM and AEM study. Contributions to Mineralogy and Petrology, 112, 119–133.CrossRefGoogle Scholar
  35. Shau, Y.H., Peacor, D.R., and Essene, E.J. (1990) Corrensite and mixed-layer chlorite/corrensite in metabasalt from northern Taiwan: TEM/AEM, EMPA, XRD, and optical studies. Contributions to Mineralogy and Petrology, 105, 123–142.CrossRefGoogle Scholar
  36. Surdam, R.C. and Crossey, L.J. (1985) Mechanisms of organic/inorganic interactions in sandstones/shale sequences. In Relations of Organic Matter and Mineral Diagenesis, D.L. Gautier, Y.K. Kharaka, and R.C. Surdam, eds., Society of Economic Paleontologists and Mineralogists, Tulsa, Oklahoma, 177–232.CrossRefGoogle Scholar
  37. Velde, B. (1977) A proposed phase diagram for illite, expanding chlorite, corrensite and illite-montmorillonite mixed layered minerals. Clays and Clay Minerals, 25, 264–270.CrossRefGoogle Scholar
  38. Zane, A., Sassi, R., and Guidotti, C.V. (1998) New data on metamorphic chlorite as a petrogenetic indicator mineral, with special regard to greenschists-facies rocks. Canadian Mineralogist, 36, 713–726.Google Scholar

Copyright information

© The Clay Minerals Society 2000

Authors and Affiliations

  • José F. Barrenechea
    • 1
    Email author
  • Magdalena Rodas
    • 1
  • Martin Frey
    • 2
  • Jacinto Alonso-Azcárate
    • 3
  • José Ramón Mas
    • 4
  1. 1.Departamento de Cristalografía y MineralogíaUniversidad Complutense de MadridMadridSpain
  2. 2.Mineralogisch-Petrographisches InstitutBasel UniversityBaselSwitzerland
  3. 3.Facultad Ciencias del Medio AmbienteUniversidad de Castilla-La ManchaToledoSpain
  4. 4.Departamento de EstratigrafíaUniversidad Complutense de MadridMadridSpain

Personalised recommendations