Clays and Clay Minerals

, Volume 48, Issue 2, pp 238–245 | Cite as

Low-Temperature Acid Weathering in Newhaven, Sussex, United Kingdom, and Its Application to Theoretical Modeling in Radioactive Waste-Disposal Sites

  • Thierry De PutterEmail author
  • Alain Bernard
  • Alain Perruchot
  • Dominique Nicaise
  • Christian Dupuis


Tertiary weathered sediments located immediately to the west of the harbor at Newhaven, Sussex, UK, were investigated by examination of major and trace elements by scanning electron microscope (SEM), microprobe, and inductively coupled plasma mass spectrometer (ICP-MS), and the mineralogy was studied by optical petrography, X-ray diffraction (XRD), transmission electron microscope (TEM), selective leaching, and thermodynamic modeling. Studied outcrops experienced acid leaching by sulfuric acid percolating downward through Tertiary sediments overlying Cretaceous chalk. The progressive neutralization of the percolating acid fluids resulted in “sequentially” layered neoformation of minerals: jarosite, iron oxides, aluminous minerals (sulfates, oxyhydroxides), gypsum, and Fe-Mn oxides. Substantial agreement was found between field observations and mineral assemblages obtained by modeling with the program CHILLER. These results suggest that the initial assumptions on the weathering process and mechanisms are correct. The relevance and implications of this study in the modeling of future denudation and weathering processes of radioactive waste-disposal sites (both deeply buried sites for high-leveI waste and surface sites for low-level waste) are discussed. Neoformed phases, such as jarosite, aluminous minerals, and silico-aluminous gels may play a significant role in the efficient trapping of mobilized pollutant radionuclides.

Key Words

Acid Weathering Aluminous Minerals Jarosite Radioactive-Waste Sites Silico-Aluminous Gels Thermodynamic Modeling 


  1. Africano, F. and Bernard, A. (2000) Acid alteration in the fumarolic environment of Usu volcano, Hokkaido, Japan. Journal of Volcanology and Geothermal Research, in press.Google Scholar
  2. Aja, S.U. (1998) The sorption of the rare earth element, Nd, onto kaolinite at 25°C. Clays and Clay Minerals, 46, 103–109.CrossRefGoogle Scholar
  3. Andrews, J.E., Brimblecombe, P., Jickells, T.D., and Liss, P.S. (1996 An Introduction to Environmental Chemistry. Blackwell, Oxford, 209 pp.Google Scholar
  4. Baron, D. and Palmer, C.D. (1996) Solubility of jarosite at 4–35°C. Geochimica et Cosmochimica Acta, 60, 185–195.CrossRefGoogle Scholar
  5. Bernard, A., Jedwab, J., Van Moer, A., and Yourassowsky, N. (1997) Rapport de Recherche: Le Piégeage de l’lode Radioactif. Internal Report, Department of Geochemistry and Mineralogy, Université Libre de Bruxelles, 63 pp.Google Scholar
  6. Bone, D.A. (1976) The Tertiary deposits at Newhaven, Sussex. Tertiary Research, 1, 47–49.Google Scholar
  7. Bonneau, M. and Souchier, B. (1979). Constituants et propriétés du sol. In Pédologie, P. Duchaufour and B. Souchier, eds., Masson, Paris, 32–35.Google Scholar
  8. Brouard, E. (1992) Etude des cryptokarsts tertiaires de la Forêt de la Bessède (Périgord, France) et de l’Entre-Sambre-et-Meuse (Belgique): Lithologie, géochimie, néogenèse et évolution des systèmes karstiques. Ph.D. thesis, Paris Sud-Orsay University, 270 pp.Google Scholar
  9. Carson, C.D., Fanning, D.S., and Dixon, J.B. (1982) Alfisols and ultisols with acid sulfate weathering features in Texas. In Acid Sulfate Weathering, J.A. Kittrick, D.S. Fanning, and L.R. Hossner, eds., Soil Science Society of America Special Publication 10, Madison, Wisconsin, 127–146.Google Scholar
  10. Churchman, G.J., Whitton, J.S., Claridge, G.G.C., and Theng, B.K.G. (1984) Intercalation method using formamide for differentiating halloysite from kaolinite. Clays and Clay Minerals, 32, 241–248.CrossRefGoogle Scholar
  11. Delmelle, P. and Bernard, A. (1994) Geochemistry, mineralogy, and chemical modeling of the acid crater lake of Kawah Ijen Volcano, Indonesia. Geochimica et Cosmochimica Acta, 58, 2445–2460.CrossRefGoogle Scholar
  12. De Putter, Th. and Charlet, J.-M. (1994) Analogies Naturelles en Milieu Argileux. ONDRAF (National Belgian Agency for Radioactive Waste Management) Report, NIROND 94-13, 183 pp.Google Scholar
  13. De Putter, Th., André, L., Bernard, A., Charlet, J.-M., Dupuis, Ch., Jedwab, J., Nicaise, D., Perruchot, A., and Quinif, Y. (1997) Analogies Naturelles et Archeologiques de Surface-Apports de la Géochimie de l’Altération et de l’Étude de la Durabilité des Matériaux à la Sûreté de l’Évacuation de Surface des Déchets Radioactifs de Faible Activité. ON-DRAF (National Belgian Agency for Radioactive Waste Management) Report, NIROND 97-09, 141 pp.Google Scholar
  14. De Putter, Th., Charlet, J.-M., and Quinif, Y. (1999) REE, Y and U concentration at the fluid-iron oxide interface in Late Cenozoic cryptodolines from Southern Belgium. Chemical Geology, 153, 139–150.CrossRefGoogle Scholar
  15. Dupuis, C. and Gruas-Cavagnetto, C. (1996) The Woolwich Beds and the London Clay of Newhaven (East Sussex): New palynological and stratigraphical data The London Naturalist, 75, 27–39.Google Scholar
  16. Fournier, R.O. (1985) The behavior of silica in hydrothermal solutions. Reviews in Economic Geology, 2, 45–60.Google Scholar
  17. Herbert, R.B. (1997) Properties of goethite and jarosite precipitated from acidic groundwater, Dalama, Sweden. Clays and Clay Minerals, 45, 261–273.CrossRefGoogle Scholar
  18. Kargbo, D.M., Fanning, D.S., Inyang, H.I., and Duell R.W. (1993) Environmental significance of acid sulfate “clays” as waste covers. Environmental Geology, 22, 218–226.CrossRefGoogle Scholar
  19. Nicaise, D., De Putter, Th., André, L., Jedwab, J., and Dupuis, C. (1996) Néoformation de phosphates nanométriques de terres rares en altération acide de basse température: Implications pour le piégeage des terres rares, de l’uranium et du thorium. Comptes-Rendus de l’Académic des Sciences de Paris (série IIa), 323, 113–120.Google Scholar
  20. Nordstrom, D.K. (1982) Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In Acid Sulfate Weathering, J.A. Kittrick, D.S. Fanning, and L.R. Hossner, eds., Soil Science Society of America Special Publication 10, Madison, Wisconsin, 37–55.Google Scholar
  21. Perruchot, A., Delbove, F., Paulus, J.M., and Adloff, J.P. (1992) Behaviour of uranyl and neptunyl cations during ion exchange between silicate gels pSiO2-(A,B)-nH2O and aqueous solutions (A2+, B2+) (A2+ = UO22+, NpO22+; B2+ = Mg2+, Ca2+, Ni2+): An experimental study. Applied Geochemistry, supplementary Issue, 1, 95–107.CrossRefGoogle Scholar
  22. Reed, M.H. (1982) Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase. Geochimica et Cosmochimica Acta, 46, 513–528.CrossRefGoogle Scholar
  23. Reed, M.H. and Spycher, N. (1984) Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. Geochimica et Cosmochimica Acta, 48, 1479–1492.CrossRefGoogle Scholar
  24. Schwertmann U. (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat Lösung. Zeitschrift für Pflanzenemahrung und Bodenkunde, 105, 194–202.CrossRefGoogle Scholar
  25. Spycher, N. and Reed, M.H. (1989) CHILLER: A program for computing water-rock reactions, boiling, mixing and other reaction processes in aqueous-mineral-gas systems (revised preliminary edition). Department of Geological Sciences, University of Oregon, Eugene.Google Scholar
  26. Stumm, W. and Morgan, J.J. (1996) Aquatic Chemistry—Chemical Equilibria and Rates in Natural Waters. Wiley, New York, 1022 pp.Google Scholar
  27. Van Breemen, N. (1982) Genesis, morphology and classification of acid sulfate soils in coastal plains. In Acid Sulfate Weathering, J.A. Kittrick, D.S. Fanning, and L.R. Hossner, eds., Soil Science Society of America Special Publication 10, Madison, Wisconsin, 95–108.Google Scholar
  28. Wada, K. (1979) Structural formulas of allophanes. In Proceedings of the International Clay Conference (Oxford), M.M. Mortland and V.C. Farmer, eds., Developments in Sedimentology 27, Elsevier, Amsterdam, 537–545.Google Scholar
  29. Wada, K. (1982) Amorphous clay minerals—chemical composition, crystalline state, synthesis and surface properties. In Proceedings of the International Clay Conference (Bologna), H. van Olphen and F. Veniale, eds., Developments in Sedimentology 35, Elsevier, Amsterdam, 385–398.Google Scholar
  30. Wilmot, R.D. and Young, B. (1985) Aluminite and other aluminium minerals from Newhaven, Sussex: The first occurrence of norstrandite in Great Britain. Proceedings of the Geological Association, 96, 47–52.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 2000

Authors and Affiliations

  • Thierry De Putter
    • 1
    Email author
  • Alain Bernard
    • 2
  • Alain Perruchot
    • 3
  • Dominique Nicaise
    • 1
  • Christian Dupuis
    • 1
  1. 1.Faculté Polytechnique de MonsGéologie Fondamentale et AppliquéeMonsBelgium
  2. 2.Université Libre de Bruxelles, Géochimie et MinéralogieBruxellesBelgium
  3. 3.Géochimie des Roches Sédimentaires, UMR-CNRS 8616Université de Paris-SudOrsay cedexFrance

Personalised recommendations