Clays and Clay Minerals

, Volume 48, Issue 2, pp 224–229 | Cite as

One-Step Synthesis of Alkyltrimethylammonium-Intercalated Magadiite

  • Heloise O. PastoreEmail author
  • Marcelo Munsignatti
  • Artur J. S. Mascarenhas


Cetyltrimethylammonium- and tetradecyltrimethylammonium-intercalated magadiites were prepared by direct syntheses, starting from sodium metasilicate (Na2O/SiO2 = 1.0) and nitric acid. Total substitution of sodium by cetyltrimethylammonium or tetradecyltrimethylammonium cations was not achieved in the range of surfactant: silicon molar ratios used in this study. When a phosphoniun-based surfactant replaces the ammonium surfactants in the same procedure, the result of the synthesis is a mixture of quartz and unmodified surfactant. If dodecylammonium bromide is used, an MCM-41 molecular sieve is obtained. The substitution of the silicon source by tetramethylammonium silicate or of nitric acid by hydrochloric, hydrofluoric, or acetic acids also yields MCM-41 molecular sieves, indicating that the formation of magadiite is greatly dependent on the presence of sodium cations and nitrate anions.

Key Words

Alkylammomium-Intercalated Magadiite Intercalation Magadiite Organo-Magadiite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almond, G.G., Harris R.K., and Franklin, K.R. (1997) A structural consideration of kanemite, octosilicate, magadiite and kenyaite. Journal of Materials Chemistry, 7, 681–687.CrossRefGoogle Scholar
  2. Annehed, H., Fälth, L., and Lincoln, F.J. (1982) Crystal structure of synthetic makatite Na2Si4O8(OH)2.4H2O. Zeitschrift für Kristallographie, 159, 203–210.Google Scholar
  3. Araya, A. and Lowe, B.M. (1985) A partial determination of the stability fields of ferrierite and zeolites ZSM-5, ZSM-48, and NU-10 in the K2O-Al2O3-SiO2-H2N(C2)NH2 system. Journal of Chemical Research (S), 23, 192–193.Google Scholar
  4. Barriet, D., Gamboa, C., and Sepulveda, L. (1980) Association of anions to cationic micelles. Journal of Physical Chemistry, 84, 272–275.CrossRefGoogle Scholar
  5. Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T-W., Olson, D.H., Sheppard. E.W., McCullen, S.B., Higgins J.B., and Schlenker, J.L. (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114, 10834–10843.CrossRefGoogle Scholar
  6. Beneke, K. and Lagaly, G. (1977) Kanemite-inner crystalline reactivity and relations to other sodium silicates. American Mineralogist, 62, 763–771.Google Scholar
  7. Beneke, K. and Lagaly, G. (1983) Kenyaite-synthesis and properties. American Mineralogist, 68, 818–826.Google Scholar
  8. Borbély, G.P., Beyer, H.K., Kiyozumi Y., and Mizukami, F. (1997) Recrystallization of magadiite varieties isomorphically substituted with aluminum to MFI and MEL zeolites. Microporous Materials, 11, 45–51.CrossRefGoogle Scholar
  9. Borbély, G.P., Beyer, H.K., Kiyozumi, Y., and Mizukami, F. (1998) Synthesis and characterization of a ferrierite made by recrystallization of an aluminum-containing hydrated magadiite. Microporous Mesoporous Materials, 22, 57–68.CrossRefGoogle Scholar
  10. Burkett, S.L., Press, A., and Mann, S. (1997) Synthesis, characterization and reactivity of layered inorganic-organic nanocomposites based on 2:1 trioctahedral phyllosilicates. Chemistry of Materials, 9, 1071–1073.CrossRefGoogle Scholar
  11. Carrado, K.A., Thiyagarajan, P., Winans, R.E., and Botto, R.E. (1991) Hydrothermal crystallization of porphyrin-containing layer silicates. Inorganic Chemistry, 30, 794–799.CrossRefGoogle Scholar
  12. Carrado, K.A., Thiyagarajan, P., and Elder, D.L. (1996) Polyvinyl alcohol-clay complexes formed by direct synthesis. Clays and Clay Minerals, 44, 506–514.CrossRefGoogle Scholar
  13. Chen, C.-Y., Xiao S.-Q., and Davis, M.E. (1995) Studies on ordered mesoporous materials 3. Comparison of MCM-41 to mesoporous materials derived from kanemite. Microporous Materials, 4, 1–20.CrossRefGoogle Scholar
  14. Crone, I.A., Franklin, K.R., and Graham, P. (1995) A new route for the preparation of hydrated alkali-metal silicates. Journal of Materials Chemistry, 5, 2007–2011.CrossRefGoogle Scholar
  15. Engelhardt, G., and Michel, D. (1987) High Resolution Solid-State NMR of Silicates and Zeolites. John Wiley and Sons, Norwich, 485 pp.Google Scholar
  16. Eugster, H.P. (1967) Hydrous sodium silicates from lake Magadi, Kenya: Precursors of bedded chert. Science, 157, 1177–1180.CrossRefGoogle Scholar
  17. Firouzi, A., Atef, F., Oertly, A.G., Stucky, G.D., and Schmelka, B.F. (1997) Alkaline lyotropic silicate-surfactant liquid crystals. Journal of the American Chemical Society, 119, 3596–3610.CrossRefGoogle Scholar
  18. Flanigen, E.M., Khatami, H., and Szymanski, H.A. (1976) Structural analysis by IR spectroscopy. In Zeolite Chemistry and Catalysis, J.A. Rabo, ed., American Chemical Society, Washington, D.C., 80–117.Google Scholar
  19. Fletcher, R.A. and Bibby, D.M. (1987) Synthesis of kenyaite and magadiite in the presence of various anions. Clays and Clay Minerals, 35, 318–320.CrossRefGoogle Scholar
  20. Iler, R.K. (1964) Ion-exchange properties of crystalline hydrated silica. Journal of Colloid Science, 19, 648–657.CrossRefGoogle Scholar
  21. Inagaki, S., Fukushima, Y., and Kuroda, K. (1993) Synthesis of highly ordered mesoporous materials from a layered polysilicate. Journal of Chemical Society, Chemical Communications, 680–682.Google Scholar
  22. Kosuge, K. and Tsunashima, A. (1996) Dispersion of H-magadiite and H-kenyite particles by ion exchange of H+ with alkali cations. Langmuir, 12, 1124–1126.CrossRefGoogle Scholar
  23. Morgan, J.D., Napier, D.H., Warr, G.G., and Nicol, S.K. (1994) Measurements of the selective adsorption of ions at air-surfactant solution interfaces. Langmuir, 10, 797–801.CrossRefGoogle Scholar
  24. Ogawa, M., Okutomo, S., and Kuroda, K. (1998) Control of interlayer microstructure of a layered silicate by surface modification with organochlorosilanes. Journal of the American Chemical Society, 120, 7361–7362.CrossRefGoogle Scholar
  25. Pastore, H.O., Munsignatti, M., Rippel, M.M., and Bittencourt, D. (1999) Study on the formation of mesoporous molecular sieves in the presence of various anions. Microporous and Mesoporous Materials, 32, 211–228.CrossRefGoogle Scholar
  26. Schwieger, W., Heyer, W., and Bergk, K.-H. (1988) The hydrothermal magadiite crystallization 1. The kinetics of the crystallization-possibilities of their description. Zeitschrift für Anorganische und Allgemeine Chemie, 559, 191–200.CrossRefGoogle Scholar
  27. Schwieger, W., Bergk, K.-H., Heinemann, D., Lagaly G., and Beneke, K. (1991) High-resolution Si-29 solid-state NMR-studies on a synthetic sodium silicate hydrate (makatite) and its crystalline silicic acid. Zeitschrift für Kristallographie, 197, 1–12.CrossRefGoogle Scholar
  28. Sepulveda, L. and Cortes, J. (1985) Ionization degrees and critical micelle concentrations of hexadecyltrimethylammonium and tetradecyltrimethylammonium micelles with different counterions. Journal of Physical Chemistry, 89, 5322–5324.CrossRefGoogle Scholar
  29. Van der Gaag, F.J., Jansen J.C., and van Bekkum, H. (1985) Template variations in the synthesis of zeolite ZSM-5. Applied Catalysis, 17, 261–271.CrossRefGoogle Scholar
  30. Wang, Z. and Pinnavaia, T.J. (1998) Hybrid organic-inorganic nanocomposites: Exfoliation of magadiite nanolayers in an elastomeric epoxy polymer. Chemistry of Materials, 10, 1820–1826.CrossRefGoogle Scholar
  31. Wang, Z., Lau T., and Pinnavaia T.J. (1996) Hybrid organic inorganic nanocomposites formed from an epoxy polymer and a layered silicic acid (magadiite). Chemistry of Materials, 8, 2200.CrossRefGoogle Scholar
  32. Whitehurst, D.D. (1992) Method to recover organic templates from freshly synthesized molecular sieves. U.S. Patent 5,143,879.Google Scholar
  33. Wirth, M.J., Fairbank, R.W.P., and Fatunmbi, H.O. (1997) Mixed self-assembled monolayers in chemical separations. Science, 275, 44–47.CrossRefGoogle Scholar
  34. Yanagisawa, T., Kuroda K., and Kato, C. (1988) Organic derivatives of layered polysilicates 2. Reaction of magadiite and kenyite with diphenylmethylchlorosilane. Bulletin of the Chemical Society of Japan, 61, 3743–3745.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 2000

Authors and Affiliations

  • Heloise O. Pastore
    • 1
    Email author
  • Marcelo Munsignatti
    • 1
  • Artur J. S. Mascarenhas
    • 1
  1. 1.Instituto de QuímicaUniversidade Estadual de CampinasCampinas, SPBrazil

Personalised recommendations