Advertisement

Clays and Clay Minerals

, Volume 48, Issue 2, pp 173–184 | Cite as

Influence of Synthesis pH on Kaolinite “Crystallinity” and Surface Properties

  • Claire-Isabelle Fialips
  • Sabine PetitEmail author
  • Alain Decarreau
  • Daniel Beaufort
Article

Abstract

Hydrothermal syntheses were performed at various pH values and temperatures to induce variability in kaolinite defect density. Temperature of synthesis ranged from 200 to 240°C, for 21 d. Initial pH at room temperature ranged from 0.5 to 14. The starting material was a hydrothermally treated gel, with an atomic Si/Al ratio of 0.93, partly transformed into kaolinite.

Kaolinite was obtained for a wide range of pH. Although no influence of temperature on “crystallinity” (i.e., defect density) was observed, the effect of pH was important. A continuous series was obtained from a low-defect kaolinite, with high thermal stability and a hexagonal morphology for the most acidic final pH, to a high-defect kaolinite, with low thermal stability and lath shape for the most basic final pH. These variations of kaolinite properties appear related to the pH dependence of kaolinite surface speciation. Increasing pH value results in increased cation adsorption on the kaolinite external surfaces and increases in the elongation of particles.

Key Words

Defect Density FTIR Hydrothermal Synthesis Kaolinite pH Surface Speciation XRD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, S.W. (1980) Structure of layer silicates. In Crystal Structures of Clay Minerals and Their X-ray Identification, G.W. Brindley and G. Brown, eds., Mineralogical Society, London, 28–39.Google Scholar
  2. Barrer, R.M. and White, E.A.D. (1952) The hydrothermal chemistry of silicates. Part II. Synthetic crystalline sodium aluminosilicates. Journal of the Chemical Society, 1561–1571.Google Scholar
  3. Barrios, J., Plançon, A., Cruz, M.I., and Tchoubar, C. (1977) Qualitative and quantitative study of stacking faults in a hydrazine treated kaolinite—relationship with the infrared spectra. Clays and Clay Minerals, 25, 422–429.CrossRefGoogle Scholar
  4. Bish, D.L. and Johnston, C.T. (1993) Rietveld refinement and Fourier-transform infrared spectroscopic study of the dickite structure at low temperature. Clays and Clay Minerals, 41, 297–304.CrossRefGoogle Scholar
  5. Brindley, G.W. and Brown, G., eds. (1980) Crystal Structures of Clay Minerals and Their X-ray Identification. Mineralogical Society, London, 495 pp.Google Scholar
  6. Brindley, G.W. and Porter, A.R.D. (1978) Occurrence of dickite in Jamaica-ordered and disordered varieties. American Mineralogist, 63, 554–562.Google Scholar
  7. Brindley, G.W., Kao, C.-C., Harrison., J.L., Lipsicas, M., and Raythatha, R. (1986) Relation between structural disorder and other characteristics of kaolinites and dickites. Clays and Clay Minerals, 34, 239–249.CrossRefGoogle Scholar
  8. Calvert, C.S. (1981) Chemistry and mineralogy of iron-substituted kaolinite in natural and synthetic systems. Ph.D. thesis, Texas A&M University, Texas, USA, 224 pp.Google Scholar
  9. Cases, J.M., Liétard, O., Yvon, J., and Delon, J.F. (1982) Etude des propriétés cristallochimiques, morphoiogiques et superficielles de kaolinites désordonnées. Bulletin de Minéralogie, 105, 439–457.Google Scholar
  10. Chatterjee, N.D. (1970) Synthesis and upper stability of paragonite. Contributions to Mineralogy and Petrology, 27, 244–257.CrossRefGoogle Scholar
  11. Cruz-Cumplido, M., Sow, C., and Fripiat, J.J. (1982) Spectre infrarouge des hydroxyles, cristallinité et énergie de cohésion des kaolins. Bulletin de Minéralogie, 105, 493–498.Google Scholar
  12. De Kimpe, C., Gastuche, M.C., and Brindley, G.W. (1964) Low-temperatures syntheses of kaolin minerals. American Mineralogist, 49, 1–16.Google Scholar
  13. Delineau, T., Allard, T., Muller, J.P., Barrès, O., Yvon, J., and Cases, J.M. (1994) FTIR reflectance vs. EPR studies of structural iron in kaolinites. Clays and Clay Minerals, 42, 308–320.CrossRefGoogle Scholar
  14. Devidal, J.L., Dandurand, J.L., and Schott, J. (1992) Dissolution and precipitation kinetics of kaolinite as a function of chemical affinity (T = 150°C, pH = 2 and 7.8). In Water-Rock Interaction, Y.K. Kharaka and A.S. Maest, eds., Balkema, Rotterdam, 93–94.Google Scholar
  15. Eberl, D. and Hower, J. (1975) Kaolinite synthesis: The role of the Si/Al and (alkali)/(H+) ratio in hydrothermal systems. Clays and Clay Minerals, 23, 301–309.CrossRefGoogle Scholar
  16. Espiau, P. and Pedro, G. (1984) Comportement des ions aluminiques et de la silice en solution: Étude de la formation de la kaolinite. Clay Minerals, 19, 615–627.CrossRefGoogle Scholar
  17. Farmer, V.C. (1964) Infrared absorption of hydroxyl groups in kaolinite. Science, 145, 1189–1190.CrossRefGoogle Scholar
  18. Farmer, V.C. (1974) The layer silicates. In The Infrared Spectra of Minerals, V.C. Farmer, ed., Mineralogical Society, London, 331–365.CrossRefGoogle Scholar
  19. Farmer, V.C. and Russell, J.D. (1964) The infrared spectra of layer silicates. Spectrochimica Acta, 20, 1149–1173.CrossRefGoogle Scholar
  20. Fiore, S., Huertas, F.J., Huertas, F., and Linares, J. (1995) Morphology of kaolinite crystals synthesized under hydrothermal conditions. Clays and Clay Minerals, 43, 353–360.CrossRefGoogle Scholar
  21. Frost, R.L. and Van Der Gaast, S.J. (1997) Kaolinite hydroxyls—a Raman microscopy study. Clay Minerals, 32, 471–484.CrossRefGoogle Scholar
  22. Guinier, A. (1956) Diffraction par les cristaux de très petite taille. In Théorie et Technique de la Radiocristallographie, A. Guinier, ed., Dunod, Paris, 462–465.Google Scholar
  23. Hinckley, D.N. (1963) Variability in crystallinity values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays and Clay Minerals, 11, 229–235.CrossRefGoogle Scholar
  24. Hlavay, J., Jonas, K., Elek, S., and Inczedy, J. (1977) Characterization of the particule size and the crystallinity of certain minerals by infrared spectrophotometry and other instrumental methods—I. Investigations on clay minerals. Clays and Clay Minerals, 25, 451–456.CrossRefGoogle Scholar
  25. Huertas, F.J., Huertas, F., and Linares, J. (1993) Hydrothermal synthesis of kaolinite: Method and characterization of synthetic materials. Applied Clay Science, 7, 345–356.CrossRefGoogle Scholar
  26. Jeanroy, E. (1974) Analyse totale par spectrométrie d’absorption atomique des roches, sols, minerals, ciments après fusion au métaborate de strontium. Analysis, 2, 703–712.Google Scholar
  27. Johnston, C.T., Agnew, S.E, and Bish, D.L. (1990) Polarized single-crystal Fourier-transform infrared microscopy of Ouray dickite and Keokuk kaolinite. Clays and Clay Minerals, 38, 573–583.CrossRefGoogle Scholar
  28. Kukovskii, E.G., Plastinina, M.A., and Fedorenko, Y.U.G. (1969) Nature of water in layered silicates. II. Infrared spectroscopy of OHn groups in 1:1 dioctahedral layers. Konstituciâ i Svojstva Mineraloy, 3, 17–25. (in Russian).Google Scholar
  29. La Iglesia Fernandez, A. and Martin Vivaldi, J.L. (1973) A contribution to the synthesis of kaolinite. In Proceedings of the International Clay Conference, Madrid, 1972, J.M. Serratosa and A. Sánchez, eds., Division de Ciensas, Madrid, 173–184.Google Scholar
  30. Ledoux, R.L. and White, J.L. (1964) Infrared study of selective deuteration of kaolinite and halloysite at room temperature. Science, 145, 47–49.CrossRefGoogle Scholar
  31. Liétard, O. (1977) Contribution à l’étude des propriétés physicochimiques, cristallographiques et morphologiques des kaolins. Ph.D. thesis, University of Nancy, Nancy, France, 322 pp.Google Scholar
  32. Mestdagh, M.M., Vielvoye, L., and Herbillon, A.J. (1980) Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content. Clay Minerals, 15, 1–13.CrossRefGoogle Scholar
  33. Mestdagh, M.M., Herbillon, A.J., Rodrigue, L., and Rouxhet, P.G. (1982) Evaluation du role du fer structural sur la cristallinité des kaolinites. Bulletin de Minéralogie, 105, 457–466.Google Scholar
  34. Miyawaki, R., Tomura, S., Samejima, S., Okazaki, M., Mizuta, H., Muruyama, S.I., and Shibasaki, Y. (1991) Effects of solution chemistry on the hydrothermal synthesis of kaolinite. Clays and Clay Minerals, 39, 498–508.CrossRefGoogle Scholar
  35. Nakamoto, K. (1963) Tetrahedral and square-planar five-atom molecules. In Infrared Spectra of Inorganic and Coordination Compounds, K. Nakamoto, ed., John Wiley and Sons, New York, 103–114.Google Scholar
  36. Pampuch, R. (1966) Infrared study of thermal transformations of kaolinite and the structure of metakaolin. Prace Mineralogiczne, 6, 53–70.Google Scholar
  37. Pelletier, M., Michot, L.J., Barrès, O., Humbert, B., Petit, S., and Robert, J.L. (1999) Influence of KBr conditioning on the IR hydroxyl stretching region of saponites. Clay Minerals, 34, 439–445.CrossRefGoogle Scholar
  38. Petit, S. and Decarreau, A. (1990) Hydrothermal (200°C) synthesis and crystal chemistry of iron-rich kaolinites. Clay Minerals, 25, 181–196.CrossRefGoogle Scholar
  39. Petit, S., Decarreau, A., Mosser, C., Ehret, G., and Grauby, O. (1995) Hydrothermal synthesis (250°C) of copper-substituted kaolinites. Clays and Clay Minerals, 43, 482–494.CrossRefGoogle Scholar
  40. Petit, S., Righi, D., Madejova, J., and Decarreau, A. (1999) Interpretation of the infrared NH4+ spectrum of the NH4+-clays: Application to the evaluation of the layer-charge. Clay Minerals, 34, 543–549.CrossRefGoogle Scholar
  41. Plançon, A. and Tchoubar, C. (1977) Determination of structural defects in phyllosilicates by X-ray powder diffraction—II. Nature and proportion of defects in natural kaolinites. Clays and Clay Minerals, 25, 436–450.CrossRefGoogle Scholar
  42. Plançon, A., Giese, R.F., and Snyder, R. (1988) The Hinckley index for kaolinites. Clay Minerals, 23, 249–260.CrossRefGoogle Scholar
  43. Plançon, A., Giese, R.F., Jr., Snyder, R., Drits, V.A., and Bookin, A.S. (1989) Stacking faults in the kaolin-group minerals: Defect structures of kaolinite. Clays and Clay Minerals, 37, 203–210.CrossRefGoogle Scholar
  44. Prost, R., Damême, A., Huard, E., and Driard, J. (1987) Infrared study of structural OH in kaolinite, dickite and nacrite at 300 to 5K. In Proceedings of the International Clay Conference, Denver, 1985, L.G. Schultz, H. van Olphen, and F.A. Mumpton, eds., The Clay Minerals Society, Bloomington, Indiana, 17–23.Google Scholar
  45. Rayner, J.H. (1962) An examination of the rate of formation of kaolinite from co-precipitated silica gel. In Genèse et Synthèse des Argiles, Centre National de la Recherche Scientifique, ed., Colloques Intemationaux du Centre National de la Recherche Scientifique, Paris, 105, 123–127.Google Scholar
  46. Rouxhet, P.G., Samudacheata, N., Jacogs, H., and Anton, O. (1977) Attribution of the OH stretching bands of kaolinite. Clay Minerals, 12, 171–179.CrossRefGoogle Scholar
  47. Satokawa, S., Osaki, Y., Samejima, S., Miyawaki, R., Tomura, S., Shibasaki, Y., and Sugahara, Y. (1994) Effects of the structure of silica-alumina gel on the hydrothermal synthesis of kaolinite. Clays and Clay Minerals, 42, 288–297.CrossRefGoogle Scholar
  48. Satokawa, S., Miyawaki, R., Osaki, Y., Tomura, S., and Shibasaki, Y. (1996) Effects of acidity on the hydrothermal synthesis of kaolinite from silica-gel and gibbsite. Clays and Clay Minerals, 44, 417–423.CrossRefGoogle Scholar
  49. Stubican, V. and Roy, E. (1961) Isomorphous substitution and infrared spectra of the layer lattice silicates. American Mineralogist, 46, 32–51.Google Scholar
  50. Tettenhorst, R. and Hofmann, D.A. (1980) Crystal chemistry of boehmite. Clays and Clay Minerals, 28, 373–380.CrossRefGoogle Scholar
  51. Tomura, S., Shibasaki, Y., Mizuta, H., and Kitamura, M. (1985) Growth conditions and genesis of spherical and platy kaolinite. Clays and Clay Minerals, 33, 200–206.CrossRefGoogle Scholar
  52. Tsuzuki, Y. (1976) Solubility diagrams for explaining zone sequences in bauxite, kaolin and pyrophyllite-diaspore deposits. Clays and Clay Minerals, 24, 297–302.CrossRefGoogle Scholar
  53. Van Oosterwyck-Gastuche, M.C. and La Iglesia, A. (1978) Kaolinite synthesis. II. A review and discussion of the factors influencing the rate process. Clays and Clay Minerals, 26, 409–417.CrossRefGoogle Scholar
  54. Vedder, W. (1965) Ammonium in muscovite. Geochimica et Cosmochimica Acta, 29, 221–228.CrossRefGoogle Scholar
  55. Xie, Z. and Walther, J.V. (1992) Incongruent dissolution and surface area of kaolinite. Geochimica et Cosmochimica Acta, 56, 3357–3363.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 2000

Authors and Affiliations

  • Claire-Isabelle Fialips
    • 1
  • Sabine Petit
    • 1
    Email author
  • Alain Decarreau
    • 1
  • Daniel Beaufort
    • 1
  1. 1.Laboratoire Hydr’ ASA, UMR6532-CNRSUniversité de PoitiersPoitiers CedexFrance

Personalised recommendations