Advertisement

Clays and Clay Minerals

, Volume 48, Issue 2, pp 159–172 | Cite as

The Effect of Al on Fe Oxides. XIX. Formation of Al-Substituted Hematite from Ferrihydrite at 25°C and pH 4 to 7

  • Udo SchwertmannEmail author
  • Josef Friedl
  • Helge Stanjek
  • Darrell G. Schulze
Article

Abstract

Iron oxides in surface environments generally form at temperatures of 25 ± 10°C, but synthesis experiments are usually done at higher temperatures to increase the rate of crystallization. To more closely simulate natural environments, the transformation of 2-line ferrihydrite to hematite and goethite at 25°C in the presence of different Al concentrations and at pH values from 4 to 7 was studied in a long-term (16–20 y) experiment. Aluminum affects the hydrolysis and charging behavior of 2-line ferrihydrite and retards crystallization. Al also promotes the formation of hematite over goethite and leads to multidomainic discoidal and framboidal crystals instead of rhombohedral crystals. The strong hematite-promoting effect of Al appears to be the result of a lower solubility of the Al-containing ferrihydrite precursor relative to pure ferrihydrite. Hematite incorporates Al into its structure, as is shown by a decrease in the a and c-cell lengths and a decrease in magnetic hyperfine fields (Mössbauer spectroscopy). With hematite formed at low-temperature, these decreases were, however, smaller for the cell length and greater for the magnetic field than for hematite produced at higher temperatures. Both phenomena are removed by heating the hematite at 200°C. They are attributed to structural OH and/or structural defects. The relative content of Al in the structure is lower for hematite formed at 25°C than for hematites synthesized at higher temperatures (80 and 500°C). The maximum possible substitution of one sixth of the Fe positions was not achieved, similar to soil hematites. These results show that properties of widely distributed soil Al-containing hematites can reflect formation environment.

Key Words

Al-Substituted Hematite Formation of Fe Oxide Hyperfine Fields Structural OH Synthesis of Fe Oxides Unit-Cell Size 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anand, R.R. and Gilkes, R.J. (1987a) Variation in the properties of iron oxides within individual specimens of lateritic duricrust. Australian Journal of Soil Research, 25, 287–302.CrossRefGoogle Scholar
  2. Anand, R.R. and Gilkes, R.J. (1987b) Iron oxides in lateritic soils. Journal of Soil Science, 38, 607–622.CrossRefGoogle Scholar
  3. Atkinson, R.J., Posner, A.M., and Quirk, J.P. (1968) Crystal nucleation in Fe(III) solutions and hydroxide gels. Journal of Inorganic and Nuclear Chemistry, 30, 2371–2381.CrossRefGoogle Scholar
  4. Barron, V., Rendon, J.L., Torrent, J., and Serna, C.J. (1984) Relation of infrared, crystallochemical, and morphological properties of Al-substituted hematites. Clays and Clay Minerals, 32, 475–479.CrossRefGoogle Scholar
  5. Cornell, R.M. and Schwertmann, U. (1996) The Iron Oxides. VCH, Weinheim, 573 pp.Google Scholar
  6. de Brito Galvao, T.C. and Schulze, D.G. (1996) Mineralogical properties of a collapsible lateritic soil from Minas Gerais, Brazil. Soil Science Society of America Journal, 60, 1969–1978.CrossRefGoogle Scholar
  7. De Grave, E., Bowen, L.H., and Weed, S.B. (1982) Mossbauer study of aluminum-substituted hematites. Journal of Magnetic Materials, 27, 98–108.CrossRefGoogle Scholar
  8. De Grave, E., Bowen, L.H., Vochten, R., and Vandenberghe, R.E. (1988) The effect of crystallinity and Al substitution on the magnetic structure and Morin transition in hematite. Journal of Magnetic Materials, 72, 141–151.CrossRefGoogle Scholar
  9. Fey, M.V. and Dixon, J.B. (1981) Synthesis and properties of poorly crystalline hydrated aluminous goethites. Clays and Clay Minerals, 29, 91–100.CrossRefGoogle Scholar
  10. Fischer, W.R. and Schwertmann, U. (1975) The formation of hematite from amorphous iron(III)-hydroxide. Clays and Clay Minerals, 23, 33–37.CrossRefGoogle Scholar
  11. Fontes, M.P.F. and Weed, S.B. (1991) Iron oxides in selected Brazilian oxisols: I. Mineralogy. Soil Science Society of America Journal, 55, 1143–1149.CrossRefGoogle Scholar
  12. Friedl, J. and Schwertmann, U. (1996) Aluminium influence on iron oxides: XVIII. The effect of Al substution and crystal size on magnetic hyperfine fields of natural goethites. Clay Minerals, 31, 455–464.CrossRefGoogle Scholar
  13. Glasauer, S., Friedl, J., and Schwertmann, U. (1999) Properties of goethite prepared in acid and basic conditions in the presence of silicate. Journal of Interface and Colloid Science, 216, 106–115.CrossRefGoogle Scholar
  14. Goodman, B.A. and Lewis, D.G. (1981) Mossbauer spectra of aluminous goethites (a-FeOOH). Journal of Soil Science, 32, 351–363.CrossRefGoogle Scholar
  15. Izumi, E (1993) Rietveld analysis programs RIETAN and PREMOS and special applications. In The Rietveld Method, R.A. Young, ed., Oxford University Press, Oxford, 236–253.Google Scholar
  16. Jeanroy, E., Rajot, J.L., Pillon, P., and Herbillon, A.J. (1991) Differential dissolution of hematite and goethite in dithionite and its implications on soil yellowing. Geoderma, 50, 79–94.CrossRefGoogle Scholar
  17. Kosmas, C.S., Franzmeier, D.P, and Schulze, D.G. (1986) Relationship among derivative spectroscopy, color, crystallite dimensions and Al substitution of synthetic goethites and hematites. Clays and Clay Minerals, 34, 625–634.CrossRefGoogle Scholar
  18. Lewis, D.G. and Schwertmann, U. (1980) The effect of (OH) on the goethite produced from ferrihydrite under alkaline conditions. Journal of Colloid Interface Science, 78, 543–553.CrossRefGoogle Scholar
  19. Macedo, J. and Bryant, B.B. (1989) Preferential microbial reduction of hematite over goethite in a Brazilian oxisol. Soil Science Society of America Journal, 53, 1114–1118.CrossRefGoogle Scholar
  20. Muller, J.-P. and Boquier, G. (1987) Textural and mineralogical relationships between ferruginous nodules and surrounding clayey matrix in a laterite from Cameroon. In Proceedings of the International Clay Conference, Denver, L.G. Schultz, H. van Olphen, and F.A. Mumpton, eds., The Clay Minerals Society, Bloomington, Indiana, 184–194.Google Scholar
  21. Perinet, G. and Lafont, R. (1972) Sur les parametres cristallographiques des hematites alumineuses. Contes Rendue Academie de Science, 275, 1021–1024.Google Scholar
  22. Prasetyo, B.H. and Gilkes, R.J. (1994) Properties of iron oxides from red soils derived from tuff in western Java. Australian Journal of Soil Research, 32, 781–794.CrossRefGoogle Scholar
  23. Schneider, J. and Dinnebier, R.E. (1991) Gufi-Wyrjet: An integrated PC powder pattern analysis package. Material Science Forum, 7982, 277–282.CrossRefGoogle Scholar
  24. Schulze, D.G. and Schwertmann, U. (1987) The influence of aluminium on iron oxides. XIII. Properties of goethites synthesized in 0.2 M KOH at 25°C. Clay Minerals, 22, 83–92.CrossRefGoogle Scholar
  25. Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde, 105, 194–202.CrossRefGoogle Scholar
  26. Schwertmann, U. (1988) Goethite and hematite formation in the presence of clay minerals and gibbsite at 25°C. Soil Science Society of America Journal, 52, 288–291.CrossRefGoogle Scholar
  27. Schwertmann, U. and Carlson, L. (1994) Aluminum influence on iron oxides: XVII. Unit cell parameters and aluminum substitution of natural goethites. Soil Science Society of America Journal, 58, 256–261.CrossRefGoogle Scholar
  28. Schwertmann, U. and Cornell, R.M. (1991) Iron Oxides in the Laboratory. VCH, Weinheim, 119 pp.Google Scholar
  29. Schwertmann, U. and Kämpf, N. (1985) Properties of goethite and hematite in kaolinitic soils of southern and central Brazil. Soil Science, 139, 344–350.CrossRefGoogle Scholar
  30. Schwertmann, U. and Murad, E. (1983) Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays and Clay Minerals, 31, 277–284.CrossRefGoogle Scholar
  31. Schwertmann, U., Fitzpatrick, R.W., Taylor, R.M., and Lewis, D.G. (1979) The influence of aluminum on iron oxides. Part II. Preparation and properties of Al-substituted hematites. Clays and Clay Minerals, 27, 105–112.CrossRefGoogle Scholar
  32. Schwertmann, U., Friedl, J., and Stanjek, H. (1999) From Fe(III) ions to ferrihydrite and then to hematite. Journal of Colloid and Interface Science, 209, 215–223.CrossRefGoogle Scholar
  33. Singh, B. and Gilkes, R.J. (1992) Properties and distribution of iron oxides and their association with minor elements in the soils of south-western Australia. Journal of Soil Science, 43, 77–98.CrossRefGoogle Scholar
  34. Stanjek, H. and Schwertmann, U. (1992) The influence of aluminum on iron oxides. Part XVI: Hydroxyl and aluminum substitution in synthetic hematites. Clays and Clay Minerals, 40, 347–354.CrossRefGoogle Scholar
  35. Steinwehr, H.E. von (1967) Ursachen der Abweichung von der Vegard’ schen Regel. Zeitschrift für Kristallographie, 1235, 360–376.CrossRefGoogle Scholar
  36. Taylor, R.M. (1988) Proposed mechanism for the formation of soluble Si-Al and Fe(III)-Al hydroxy complexes in soils. Geoderma, 42, 65–77.CrossRefGoogle Scholar
  37. Taylor, R.M. and Schwertmann, U. (1978) The influence of aluminum on iron oxides. I. The influence of Al on Fe oxide formation from the Fe(II) system. Clays and Clay Minerals, 26, 373–383.CrossRefGoogle Scholar
  38. Torrent, J., Schwertmann, U., and Barron, V. (1987) The reductive dissolution of synthetic goethite and hematite in dithionite. Clay Minerals, 22, 329–337.CrossRefGoogle Scholar
  39. Wolska, E. (1981) The structure of hydrohematite. Zeitschrift für Kristallographie, 154, 69–75.Google Scholar
  40. Wolska, E. and Szajda, W. (1985) Structural and spectroscopic characteristics of synthetic hydrohematite. Journal of Material Science, 20, 4407–4414.CrossRefGoogle Scholar
  41. Wolska, E. and Szajda, W. (1988) The effect of cationic and anionic substitution on the α-(Al, Fe)2O3 lattice parameters. Solid State Ionics, 2830, 1320–1323.CrossRefGoogle Scholar
  42. Zeese, R., Schwertmann, U., Tietz, G.F., and Jux, U. (1994) Mineralogy and stratigraphy of three deep lateritic profiles of the Jos plateau, Central Nigeria. Catena, 21, 195–214.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 2000

Authors and Affiliations

  • Udo Schwertmann
    • 1
    Email author
  • Josef Friedl
    • 1
  • Helge Stanjek
    • 1
  • Darrell G. Schulze
    • 2
  1. 1.Lehrstuhl für BodenkundeTechnische Universität MünchenFreising-WeihenstephanGermany
  2. 2.Agronomy DepartmentPurdue UniversityWest LafayetteUSA

Personalised recommendations