Advertisement

Clays and Clay Minerals

, Volume 47, Issue 5, pp 605–616 | Cite as

Structural Fe3+ in Natural Kaolinites: New Insights from Electron Paramagnetic Resonance Spectra Fitting at X and Q-Band Frequencies

  • Etienne Balan
  • Thierry Allard
  • Bruno Boizot
  • Guillaume Morin
  • Jean-Pierre Muller
Article

Abstract

Structural Fe3+ in kaolinites and dickites covering a broad range of disorder was investigated using electron paramagnetic resonance (EPR) spectroscopy at both the X and Q-band frequencies. A procedure based on a numerical diagonalization of the spin Hamiltonian was used to accurately determine the second and fourth-order fine-structure parameters. A least-squares fitting method was also developed to model the EPR spectra of Fe3+ ions in disordered local environments, including multimodal site-to-site distributions. Satisfactory fits between calculated and observed X and Q-band spectra were obtained regardless of the stacking order of the samples.

In well-ordered kaolinite, Fe3+ ions are equally substituted in sites of axial symmetry (Fe(II)sites, namely Fe(II)a and Fe(II)b) which were determined to be the two non-equivalent Al1 and Al2 sites of the kaolinite structure. In dickite, Fe3+ ions were also found to be equally substituted for Al3+ in the two non-equivalent Al sites of the dickite structure. In poorly ordered kaolinites, the distribution of the fine-structure parameters indicates that Fe3+ ions are distributed between Fe(II) sites and other sites with the symmetry of the dickite sites.

Hence, when stacking disorder prevails over local perturbations of the structure, the near isotropic resonance owing to Fe3+ ions in rhombically distorted sites (Fe(I) sites) is a diagnostic feature for the occurrence of C-layers in the kaolinite structure, where C refers to a specific distribution of vacant octahedral sites in successive layers.

Key Words

Dickite Disorder EPR Fe3+ Kaolinite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abragam, A. and Bleaney, B. (1970) Electron Paramagnetic Resonance of Transition Ions. Clarendon Press, Oxford, 911 pp.Google Scholar
  2. Allard, T. and Müller, J.-P. (1998) Kaolinite as an in situ dosimeter for past radionuclide migration at the Earth’s surface. Applied Geochemistry, 13, 751–765.CrossRefGoogle Scholar
  3. Angel, B.R. and Vincent, W.E.J. (1978) Electron spin resonance studies of iron oxides associated with the surface of kaolins. Clays and Clay Minerals, 26, 263–272.CrossRefGoogle Scholar
  4. Artioli, G., Bellotto, M., Gualtieri, A., and Pavese, A. (1995) Nature of structural disorder in natural kaolinites: A new model based on computer simulation of powder diffraction data and electrostatic energy calculation. Clays and Clay Minerals, 43, 438–445.CrossRefGoogle Scholar
  5. Bish, D.L. (1993) Rietveld refinement of the kaolinite structure at 1.5 K. Clays and Clay Minerals, 41, 738–744.CrossRefGoogle Scholar
  6. Bish, D.L. and Johnston, C.T. (1993) Rietveld refinement and Fourier-transform infrared spectroscopy study of the dickite structure at low temperature. Clays and Clay Minerals, 41, 297–304.CrossRefGoogle Scholar
  7. Bish, D.L. and Von Dreele, R.B. (1989) Rietveld refinement of non-hydrogen atomic positions in kaolinite. Clays and Clay Minerals, 37, 289–296.CrossRefGoogle Scholar
  8. Bonnin, D., Muller, S., and Calas, G. (1982) Le fer dans les kaolins. Etude par spectrométries RPF., Mössbauer, EXAFS. Bulletin de Minéralogie, 105, 467–475.Google Scholar
  9. Bookin, A.S., Drits, V.A., Plançon, A., and Tchoubar, C. (1989) Stacking faults in kaolin-group minerals in the light of real structural features. Clays and Clay Minerals, 37, 297–307.CrossRefGoogle Scholar
  10. Brindley, G.W., Kao, C.-C., Harrison, J.L., Lipsicas, M., and Raythatha, R. (1986) Relation between structural disorder and other characteristics of kaolinites and dickites. Clays and Clay Minerals, 34, 239–249.CrossRefGoogle Scholar
  11. Buckmaster, H.A. (1962) Tables of matrix elements for the operators O2±1, O4±1, O6±1, O6±1. Canadian Journal of Physics, 40, 1670–1677.CrossRefGoogle Scholar
  12. Cases, J-M., Liétard, O., Yvon, J., and Delon, J-F. (1982) Etude des propriétés cristallochimiques, morphologiques, superficielles de kaolinites désordonnées. Bulletin de Minéralogie, 105, 439–455.Google Scholar
  13. Clozel, B., Allard, Th., and Muller, J-P. (1994) Nature and stability of radiation induced defects in natural kaolinites: New results and a reapraisal of published works. Clays and Clay Minerals, 46, 657–666.CrossRefGoogle Scholar
  14. Gaite, J-M. and Rager, H. (1997) Electron paramagnetic resonance study of Fe3+ at M1 position in forsterite. Journal of Physics: Condensed Matter, 9, 10033–10039.Google Scholar
  15. Gaite, J-M., Ermakoff, P., and Muller, J-P. (1993) Characterization and origin of two Fe3+ EPR spectra in kaolinite. Physics and Chemistry of Minerals, 20, 242–247.CrossRefGoogle Scholar
  16. Gaite, J-M., Ermakoff, P., Allard, Th., and Muller, J-P. (1997) Paramagnetic Fe3+: A sensitive probe for disorder in kaolinite. Clays and Clay Minerals, 45, 496–505.CrossRefGoogle Scholar
  17. Giese, R.F., Jr (1988) Kaolin minerals: Structures and stabilities. In Hydrous Phyllosilicates (Exclusive of Micas), Reviews in Mineralogy, Volume 19, S.W. Bailey, ed. Mineralogical Society of America, 29–66.CrossRefGoogle Scholar
  18. Goodman, B.A. and Hall, P.L. (1994) Electron paramagnetic spectroscopy. In Clay Mineralogy: Spectroscopic and Chemical Determinative Methods, M.J. Wilson, ed. Chapman & Hall, London, 173–225.CrossRefGoogle Scholar
  19. Hall, P.L. (1980) The application of electron spin resonance spectroscopy to studies of clay minerals: I. Isomorphous substitutions and external surface properties. Clay Minerals, 15, 321–335.CrossRefGoogle Scholar
  20. Herbillon, A.J., Mestdagh, M.M., Vilelvoye, L., and Derouane, E.G. (1976) Iron in kaolinite with special reference to kaolinite from tropical soils. Clay Minerals, 11, 201–220.CrossRefGoogle Scholar
  21. Kliava, J. (1986) EPR of impurity ions in disordered solids. Physica Status Solidi B, 134, 411–455.CrossRefGoogle Scholar
  22. Legein, C., Buzare, J.Y., Emery, J., and Jacoboni, C. (1995) Electron paramagnetic resonance determination of the local field distribution acting on Cr3+ and Fe3+ in transition metal fluoride glasses (TMFG). Journal of Physics: Condensed Matter, 7, 3853–3862.Google Scholar
  23. Lehmann, G. (1980) Correlation of zero-field splittings and site distorsions II. Application of the superposition model to Mn2+ and Fe3+. Physica Status Solidi B, 99, 623–633.CrossRefGoogle Scholar
  24. Levitz, P., Bonnin, D., Calas, G., and Legrand, A.P. (1980) A two-parameter distribution analysis of Mössbauer spectra in non-crystalline solids using general inversion method. Journal of Physics E: Scientific Instruments, 13, 427–432.CrossRefGoogle Scholar
  25. Lucas, Y., Chauvel, A., and Ambrosi, J.R (1987) Processes of aluminium and iron accumulation in latosols developed on quartz rich sediments from central Amazonia (Manaus, Brazil). In Proceedings of the International Meeting on Geochemistry of the Earth Surface and Processes of Mineral formation, Granada, Spain, R. Rodriguez-Clemente and Y. Tardy, eds. Madrid: Consejo Superior de Investigaciones Cientificas, [Paris]: Centre national de la recherche scientifique, 289–299.Google Scholar
  26. Malengreau, N., Muller, J.-R, and Calas, G. (1994) Fe-speciation in kaolins: A diffuse reflectance study. Clays and Clay Minerals, 42, 137–147.CrossRefGoogle Scholar
  27. Meads, R.E. and Maiden, P.J. (1975) Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions. Clay Minerals, 10, 313–345.CrossRefGoogle Scholar
  28. Mehra, O.P. and Jackson, M.L. (1960) Fe oxide removal from soil and clays by a dithionite-citrate system buffered with sodium carbonate. Clays and Clay Minerals, 7, 317–327.CrossRefGoogle Scholar
  29. Mestdagh, M.M., Herbillon, A.J., Rodrigue, L., and Rouxhet, P.G. (1982) Evaluation du rôle du fer structural sur la cristallinité des kaolinites. Bulletin de Minéralogie, 105, 457–466.Google Scholar
  30. Morin, G. and Bonnin, D. (1999) Modeling EPR powder spectra using numerical diagonalization of the spin Hamiltonian. Journal of Magnetic Resonance, 136, 176–199.CrossRefGoogle Scholar
  31. Muller, J.-P. and Bocquier, G. (1987) Textural and mineralogical relationships between ferruginous nodules and surrounding clayey matrices in a laterite from Cameroon. In Proceedings of the International Clay Conference, Denver, 1985, L.G. Schultz, H. Van Olphen, and F.A. Mumpton, eds. The Clay Minerals Society, Bloomington, Indiana, 186–196.Google Scholar
  32. Muller, J.-P. and Calas, G. (1989) Tracing kaolinites through their defect centers. Kaolinite paragenesis in a laterite (Cameroon). Economic Geology, 84, 694–707.CrossRefGoogle Scholar
  33. Muller, J.-P. and Calas, G. (1993) Genetic significance of paramagnetic centers in kaolinites I. Kaolin Genesis and Utilization, H.H. Murray, W. Bundy and C. Harvey, eds. The Clay Minerals Society, Boulder, 341 pp.Google Scholar
  34. Müller, J.-R, Manceau, A., Calas, G., Allard, T., Ildefonse, P., and Hazemann, J-L. (1995) Crystal-chemistry of kaolinite and Fe-Mn oxides: Relation with formation conditions of low-temperature systems. American Journal of Science, 295, 115–1155.CrossRefGoogle Scholar
  35. Murray, H.H. (1988) Kaolin minerals: Their genesis and occurrences. In Hydrous Phyllosilicates (Exclusive of Micas), Reviews in Mineralogy, Volume 19, S.W. Bailey, ed. Mineralogical Society of America, 67–89.CrossRefGoogle Scholar
  36. Newman, D.J. and Urban, W. (1975) Interpretation of S-state ion spectra. Advances in Physics, 24, 793–844.CrossRefGoogle Scholar
  37. Plançon, A., Giese, R.F., Snyder, R., Drits, V.A., and Bookin, A.S. (1989) Stacking faults in the kaolin-group minerals: The defect structure of kaolinite. Clays and Clay Minerals, 37, 203–210.CrossRefGoogle Scholar
  38. Prost, R., Damene, A., Huard, E., Driard, J., and Leydecker, J.P. (1989) Infrared study of structural OH in kaolinite, dickite, nacrite and poorly crystalline kaolinite at 5 to 600 K. Clays and Clay Minerals, 37, 464–468.CrossRefGoogle Scholar
  39. Rudowicz, C. (1985) Transformation relations for the conventional Okq and normalized Okq Stevens operator equivalents with k = 1 to 6 and −k ≤ q ≤ k. Journal of Physics C: Solid State Physics, 18, 1415–1430.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1999

Authors and Affiliations

  • Etienne Balan
    • 1
  • Thierry Allard
    • 1
  • Bruno Boizot
    • 1
  • Guillaume Morin
    • 1
  • Jean-Pierre Muller
    • 1
    • 2
  1. 1.Laboratoire de Minéralogie-Cristallographie, UMR 7590, CNRSUniversités Paris 6 et 7 and IPGP Case 115Paris Cedex 05France
  2. 2.IRDParis Cedex 10France

Personalised recommendations