Advertisement

Clays and Clay Minerals

, Volume 47, Issue 5, pp 529–554 | Cite as

Synthesis of Smectite Clay Minerals: A Critical Review

  • J. Theo Kloprogge
  • Sridhar Komarneni
  • James E. Amonette
Article

Abstract

Smectites are one of the most important groups of phyllosilicates found in soils and sediments, and certainly one of the most difficult to study. New information about the formation mechanisms, impact of structural features on surface properties, and long-term stability of smectites can best be gained from the systematic study of single-phase specimens. In most instances, these specimens can only be obtained through synthesis under controlled conditions. Syntheses of smectites have been attempted (1) at ambient pressure and low-temperature (<100°C), (2) under moderate hydrothermal conditions (100–1000°C, pressures to several kbars), (3) under extreme hydrothermal conditions (>1000°C or pressures >10 kbars), and (4) in the presence of fluoride. Of these approaches, syntheses performed under moderate hydrothermal conditions are the most numerous and the most successful in terms of smectite yield and phase-purity. Using hydrothermal techniques, high phase-purity can be obtained for beidellites and several transition-metal smectites. However, synthesis of montmorillonite in high purity remains difficult. Starting materials for hydrothermal syntheses include gels, glasses, and other aluminosilicate minerals. The presence of Mg2+ seems to be essential for the formation of smectites, even for phases such as montmorillonite which contain low amounts of Mg. Highly crystalline smectites can be obtained when extreme temperatures or pressures are used, but other crystalline impurities are always present. Although the correlation between synthesis stability fields and thermodynamic stability fields is good in many instances, metastable phases are often formed. Few studies, however, include the additional experiments (approach from under-and over-saturation, reversal experiments) needed to ascertain the conditions for formation of thermody-namically stable phases. Thorough characterization of synthetic products by modern instrumental and molecular-scale techniques is also needed to better understand the processes leading to smectite formation.

Key Words

Beidellite Fluoride Hectorite Hydrothermal Montmorillonite Nontronite Phyllosilicate Saponite Sauconite Stevensite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames, L.L. and Sand, L.B. (1958) Factors effecting maximum hydrothermal stability in montmorillonites. American Mineralogist, 43, 641–648.Google Scholar
  2. Bai, T.-B., Guggenheim, S., Wang, S.-J., Rancourt, D.G., and Koster van Groos, A.F. (1993) Metastable phase relations in the chlorite-H2O system. American Mineralogist, 78, 1208–1216.Google Scholar
  3. Bailey, S.W. (1980) Structures of layer silicates. In Crystal Structures of Clay Minerals and Their X-ray Identification, G.W. Brindley and G. Brown, eds. Mineralogical Society, London, 1–124.Google Scholar
  4. Baird, T., Cairns-Smith, A.G., MacKenzie, D.W., and Snell, D. (1971) Electron microscope studies of synthetic hectorite. Clay Minerals, 9, 250–252.CrossRefGoogle Scholar
  5. Baird, T., Cairns-Smith, A.G., and MacKenzie, D.W. (1973) An electron microscope study of magnesium smectite synthesis. Clay Minerals, 10, 17–26.CrossRefGoogle Scholar
  6. Barrer, R.M. and Jones, D.L. (1970) Chemistry of soil minerals. Part VIII. Synthesis and properties of fluorhectorites. Journal of the Chemical Society (A), 1531–1537.Google Scholar
  7. Biggar, G.M. and Ohara, M.J. (1969) A comparison of gel and glass starting materials for phase equilibrium studies. Mineralogical Magazine, 37, 198–205.CrossRefGoogle Scholar
  8. Booij, E. (1992) A characterization study of smectites with and without tetrahedral substitutions, pillared with hydroxy-Al and hydroxy-Ga polymers. M.Sc. thesis, University of Utrecht, Utrecht, The Netherlands, 78 pp.Google Scholar
  9. Borchardt, G. (1989) Smectites. In Minerals in Soil Environments, 2nd edition, J.B. Dixon and S.B. Weed, eds. Soil Science Society of America, Madison, Wisconsin, 675–727.Google Scholar
  10. Brat, S. (1985) Synthetic magnesium-aluminum-sodium silicate in radioactive waste treatment. Indian Journal of Technology, 23, 345–347.Google Scholar
  11. Brat, S. and Rajan, N.S.S. (1981) Synthetic magnesium aluminosilicates in radioactive waste treatment. Indian Journal of Chemistry, 20A, 311–312.Google Scholar
  12. Breukelaar, J., Kellendonk, F.J.A., and van Santen, R.A. (1989) A process for the manufacture of synthetic saponites. European Patent 317,006. Date Issued: 24 May.Google Scholar
  13. Breukelaar, J., van Santen, R.A., and De Winter, A.W (1990) Synthetic saponite-derivatives, a method for preparing such saponites and their use in catalytic (hydro)conversions. European Patent 398,429. Date Issued: 22 November.Google Scholar
  14. Brindley, G.W. (1980) Order and disorder in clay mineral structures. In Crystal Structures of Clay Minerals and Their X-ray Identification, G.W. Brindley and G. Brown, eds. Mineralogical Society, London, 125–195.Google Scholar
  15. Bruce, L.A., Sanders, J.V., and Turney, T.W. (1986) Hydro-thermal synthesis and characterization of cobalt clays. Clays and Clay Minerals, 34, 25–36.CrossRefGoogle Scholar
  16. Caillère, S., Henin, S., and Esquevin, J. (1953) Synthèses à basse tempèrature de phyllite ferrifère. Comptes Rendus de l’Academie Sciences (Paris), 237, 1724–1726.Google Scholar
  17. Caillère, S., Oberlin, A., and Henin, S. (1954) Etude au microscope electronique de quelques silicates phylliteux obtenus par synthèses à basse température. Clay Minerals Bulletin, 2, 146–156.CrossRefGoogle Scholar
  18. Caillère, S., Henin, S., and Esquevin, J. (1955) Synthèses à basse tempèrature de quelque minèraux ferrifère (silicates et oxydes). Bulletin de la Societe Francaise de Mineralogie et Cristallographie, 78, 227–241.CrossRefGoogle Scholar
  19. Capell, R.G. and Granquist, W.T. (1966) Cracking catalyst and process of cracking. US Patent 3,252,889. Date Issued: 24 May.Google Scholar
  20. Carrado, K.A. (1992) Preparation of hectorite clays utilizing organic and organometallic complexes during hydrothermal crystallization. Industrial and Engineering Chemistry Research, 31, 1654–1659.CrossRefGoogle Scholar
  21. Carrado, K.A., Thiyagarajan, P., Winans, R.E., and Botto, R.E. (1991) Hydrothermal crystallization of porphyrin-containing layer silicates. Inorganic Chemistry, 30, 794–799.CrossRefGoogle Scholar
  22. Carrado, K.A., Thiyagarajan, P., and Elder, D.L. (1996) Polyvinyl alcohol-clay complexes formed by direct synthesis. Clays and Clay Minerals, 44, 506–514.CrossRefGoogle Scholar
  23. Carrado, K.A., Thiyagarajan, P., and Elder, D.L. (1997a) Porous networks derived from synthetic polymer-clay complexes. In Synthesis of Porous Materials: Zeolites, Clays, and Nanostructures, M.L. Occelli and H. Kessler, eds. Marcel Dekker, New York, 551–566.Google Scholar
  24. Carrado, K.A., Thiyagarajan, P., and Song, K. (1997b) A study of organo-hectorite clay crystallization. Clay Minerals, 32, 29–40.CrossRefGoogle Scholar
  25. Cohen, E., Dudeney, A.W.L., and Shaw, R. (1980) Synthesis of clay-like materials. UK Patent 1,560,504. Date Issued: 6 February.Google Scholar
  26. De Kimpe, C.R. (1976) Formation of phyllosilicates and zeolites from pure silica-alumina gels. Clays and Clay Minerals, 24, 200–207.CrossRefGoogle Scholar
  27. Decarreau, A. (1980) Cristallogènese expérimentale des smectites magnésiennes: Hectorite, stévensite. Bulletin de Mineralogie, 103, 579–590.Google Scholar
  28. Decarreau, A. (1985) Partitioning of divalent elements between octahedral sheets of trioctahedral smectites and water. Geochimica et Cosmochimica Acta, 49, 1537–1544.CrossRefGoogle Scholar
  29. Decarreau, A. and Bonnin, D. (1986) Synthesis and crystal-logenesis at low temperature of Fe(III)-smectites by evolution of coprecipitated gels: Experiments in partially reducing conditions. Clay Minerals, 21, 861–877.CrossRefGoogle Scholar
  30. Decarreau, A., Bonnin, D., Badaut-Trauth, D., Couty, R., and Kaiser, P. (1987). Synthesis and crystallogenesis of ferric smectite by evolution of Si-Fe coprecipitates in oxidizing conditions. Clays and Clay Minerals, 22, 207–223.CrossRefGoogle Scholar
  31. Decarreau, A., Grauby, O., and Petit, S. (1992) The actual distribution of octahedral cations in 2:1 clay minerals: Results from clay synthesis. Applied Clay Science, 7, 147–167.CrossRefGoogle Scholar
  32. Eberl, D. (1978) Reaction series for dioctahedral smectites. Clays and Clay Minerals, 26, 327–340.CrossRefGoogle Scholar
  33. Eberl, D. and Hower, J. (1977) The hydrothermal transformation of sodium and potassium smectite into mixed-layer clay. Clays and Clay Minerals, 25, 215–227.CrossRefGoogle Scholar
  34. Esquevin, J. (1960) Les silicates de zinc. Etude de produits de synthese. Annales Agronomiques, 11, 497–556.Google Scholar
  35. Ewell, R.H. and Insley, H. (1935) Hydrothermal synthesis of kaolinite, dickite, beidellite and nontronite. Journal of Research of the National Bureau of Standards, 15, 173–186.CrossRefGoogle Scholar
  36. Farmer, V.C. (1997) Conversion of ferruginous allophanes to ferruginous beidellites at 95 °C under alkaline conditions with alternating oxidation and reduction. Clays and Clay Minerals, 45, 591–597.CrossRefGoogle Scholar
  37. Farmer, V.C., Krishnamurti, G.S.R., and Huang, P.M. (1991) Synthetic allophane and layer-silicate formation in SiO2-Al2O3-FeO-Fe2O3-MgO-H2O systems at 23°C and 89°C in a calcareous environment. Clays and Clay Minerals, 39, 561–570.CrossRefGoogle Scholar
  38. Farmer, V.C., McHardy, W.J., Elsass, F., and Robert, M. (1994) hk-Ordering in aluminous nontronite and saponite synthesized near 90°C: Effects of synthesis conditions on nontronite composition and ordering. Clays and Clay Minerals, 42, 180–186.CrossRefGoogle Scholar
  39. Foster, M. (1960) Interpretation of the composition of trioctahedral micas. US Geological Survey Professional Paper, 354B, 11–49.Google Scholar
  40. Fowden, L., Barrer, R.M., and Tinker, P.B., eds. (1984) Clay Minerals: Their Structure, Behaviour and Use. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 311, 219–432.Google Scholar
  41. Frank-Kamenetzkii, V.A., Kotov, N.V., and Tomashenko, A.N. (1973a) The role of AlIV and AlVI in transformation and synthesis of layer silicates. Kristall und Technik, 8, 425–435.CrossRefGoogle Scholar
  42. Frank-Kamenetskii, V.A., Kotov, N.V., and Tomashenko, A.N. (1973b) The role of AlIV (tetrahedral) and AlVI (octahedral) in layer silicate synthesis and alteration. Geokhimiya, 8, 1153–1162. (English translation, Geochemistry International, 1973, 867–874)Google Scholar
  43. Franzen, P. and van Eyk van Voorthuijsen, J.J.B. (1950) Synthesis of nickel hydrosilicates. Transactions of the 4th International Congress of Soil Science (Amsterdam), 3, 34–37.Google Scholar
  44. Gaaf, J., van Santen, R.A., Knoester, A. and van Wingerden, B. (1983) Synthesis and catalytic properties of pillared nickel substituted mica montmorillonite clays. Journal of the Chemical Society, Chemical Communications, 1983, 655–657.CrossRefGoogle Scholar
  45. Giese, R.F., Jr. (1975) Interlayer bonding in talc and pyrophyllite. Clays and Clay Minerals, 23, 165–166.CrossRefGoogle Scholar
  46. Golden, D.C. and Dixon, J.B. (1990) Low-temperature alteration of palygorskite to smectite. Clays and Clay Minerals, 38, 401–408.CrossRefGoogle Scholar
  47. Golden, D.C., Dixon, J.B., Shadfan, H., and Kippenberger, L.A. (1985) Palygorskite and sepiolite alteration to smectite under alkaline conditions. Clays and Clay Minerals, 33, 44–50.CrossRefGoogle Scholar
  48. Granquist, W.T. (1966) Synthetic silicate minerals. US Patent 3,252,757. Date Issued: 24 May.Google Scholar
  49. Granquist, W.T. and Pollack, S.S. (1960) A study of the synthesis of hectorite. Clays and Clay Minerals, 8, 150–169.CrossRefGoogle Scholar
  50. Granquist, W.T. and Pollack, S.S. (1967) Clay mineral synthesis-II. A randomly interstratified aluminian montmorillonoid. American Mineralogist, 52, 212–226.Google Scholar
  51. Granquist, W.T, Hoffman, G.W., and Boteler, R.C. (1972) Clay mineral synthesis-Ill. Rapid hydrothermal crystallization of an aluminian smectite. Clays and Clay Minerals, 20, 323–329.CrossRefGoogle Scholar
  52. Grauby, O., Petit, S., Decarreau, A., and Baronnet, A. (1993) The beidellite-saponite series: An experimental approach. European Journal of Mineralogy, 5, 623–635.CrossRefGoogle Scholar
  53. Grauby, O., Petit, S., Decarreau, A., and Baronnet, A. (1994) The nontronite-saponite series: An experimental approach. European Journal of Mineralogy, 6, 99–112.CrossRefGoogle Scholar
  54. Green, J.M., Mackenzie, K.J.D., and Sharp, J.H. (1970) Thermal reactions of synthetic hectorite. Clays and Clay Minerals, 18, 339–346.CrossRefGoogle Scholar
  55. Gregar, K.A., Winans, R.E., and Botto, R.E. (1994) Organic or organometallic template mediated clay synthesis. US Patent 5,308,808. Date Issued: 3 May.Google Scholar
  56. Güven, N. (1988) Smectites. In Hydrous Phyllosilicates (Exclusive of Micas), Reviews in Mineralogy, Volume 19, S.W. Bailey ed., Mineralogical Society of America, Washington, D.C. 497–559.CrossRefGoogle Scholar
  57. Hamilton, D.L. and Henderson, C.M.B. (1968) The preparation of silicate compositions by a gelling method. Mineralogical Magazine, 36, 832–838.CrossRefGoogle Scholar
  58. Hamilton, G. and Furtwängler, W. (1951) Synthese von Nontronit. Tschermaks Mineralogische und Petrographische Mitteilungen, 2, 397–406.CrossRefGoogle Scholar
  59. Harder, H. (1972) The role of magnesium in the formation of smectite minerals. Chemical Geology, 10, 31–39.CrossRefGoogle Scholar
  60. Harder, H. (1975) Synthese von Zink-Montmorin (Smektit) unter Oberflächenbedingungen. Naturwissenschaften, 62, 235.CrossRefGoogle Scholar
  61. Harder, H. (1976) Nontronite synthesis at low temperatures. Chemical Geology, 18, 169–180.CrossRefGoogle Scholar
  62. Harder, H. (1977) Clay mineral formation under lateritic weathering conditions. Clay Minerals, 12, 281–288.CrossRefGoogle Scholar
  63. Harder, H. (1978) Synthesis of iron layer silicate minerals under natural conditions. Clays and Clay Minerals, 26, 65–72.CrossRefGoogle Scholar
  64. Hartman, H., Sposito, G., Yang, A., Manne, S., Gould, S.A.C., and Hansma, P.K. (1990) Molecular-scale imaging of clay-mineral surfaces with the atomic force microscope. Clays and Clay Minerals, 38, 337–342.CrossRefGoogle Scholar
  65. Harward, M.E. and Brindley, G.W. (1966) Swelling properties of synthetic smectites in relation to lattice substitutions. Clays and Clay Minerals, 13, 209–222.CrossRefGoogle Scholar
  66. Heinerman, J.J.L. (1985) Process for the hydroisomerization of paraffins. US Patent 4,511,752. Date Issued: 16 April.Google Scholar
  67. Henin, S. (1956) Synthesis of clay minerals at low temperatures. Clays and Clay Minerals, 4, 54–60.CrossRefGoogle Scholar
  68. Henin, S. and Robichet, O. (1954) A study of the synthesis of clay minerals. Clay Minerals, 2, 110–115.CrossRefGoogle Scholar
  69. Herrero, C.P., Sanz, J., and Serratosa, J.M. (1985) Tetrahedral cation ordering in layer silicates by 29Si NMR spectroscopy. Solid State Communications, 53, 151–154.CrossRefGoogle Scholar
  70. Herrero, C.P., Gregorkiewitz, M., Sanz, J., and Serratosa, J.M. (1987) 29Si MAS-NMR spectroscopy of mica-type silicates: Observed and predicted distribution of tetrahedral Al-Si. Physics and Chemistry of Minerals, 15, 84–90.CrossRefGoogle Scholar
  71. Hertl, W. and Bartholomew, R.F. (1990) Orientation of hexanediamine in synthetic fluorhectorite. Clays and Clay Minerals, 38, 507–512.CrossRefGoogle Scholar
  72. Hickson, D.A. (1974) Layered clay minerals, catalysts, and processes for using. US Patent 3,844,979. Date issued: 29 October.Google Scholar
  73. Hickson, D.A. (1975) Layered clay minerals, catalysts, and processes for using. US Patent 3,892,655. Date Issued: 1 July.Google Scholar
  74. Holmgren, J. (1995) Hydrocarbon conversion process using a fluorided beidellite clay. US Patent 5,393,411. Date Issued: 28 February.Google Scholar
  75. Huve, L., Le Dred, R., Saehr, D., and Baron, J. (1992) Synthesis of diotahedral 2:1 layer silicates in acid and fluoride medium. In Synthesis of Microporous Materials, M.L. Occelli and H. Robson, eds. Van Nostrand Reinhold, New York, 202–287.Google Scholar
  76. Huve, L., Le Dred, R., Saehr, D., and Baron, J. (1997) Synthesis of dioctahedral 2:1 layer silicates in acid and fluoride medium. In Synthesis of Porous Materials: Zeolites, Clays, and Nanostructures, M.L. Occelli and H. Kessler, eds. Marcel Dekker, New York, 465–489.Google Scholar
  77. Iiyama, J.T. and Roy, R. (1963a) Controlled synthesis of heteropolytypic (mixed layer) clay minerals. Clays and Clay Minerals, 10, 4–22.CrossRefGoogle Scholar
  78. Iiyama, J.T. and Roy, R. (1963b) Unusually stable saponite in the system Na2O-MgO-Al2O3-SiO2. Clay Minerals Bulletin, 5, 161–171.CrossRefGoogle Scholar
  79. Iwasaki, T., Onodera, Y, and Torii, K. (1989) Rheological properties of organophilic synthetic hectorites and saponites. Clays and Clay Minerals, 37, 248–257.CrossRefGoogle Scholar
  80. Jacobs, K.Y., Soers, J., and Schoonheydt, R.A. (1997) The synthesis of hectorite: A template effect? In Synthesis of Porous Materials: Zeolites, Clays, and Nanostructures, M.L. Occelli and H. Kessler, eds. Marcel Dekker, New York, 451–463.Google Scholar
  81. Jaffe, J. (1974) Hydrothermal method for manufacturing a novel catalytic material, catalysts containing said material, and processes using said catalysts. US Patent 3,803,026. Date Issued: 9 April.Google Scholar
  82. Karšulin, M. and Stubičan, V. (1954) Über die Struktur and die Eigenschafte synthetischer Montmorillonite. Monatsheft für Chemie, 85, 343–358.CrossRefGoogle Scholar
  83. Kawano, M. and Tomita, K. (1992) Formation of allophane and beidellite during hydrothermal alteration of volcanic glass below 200°C. Clays and Clay Minerals, 40, 666–674.CrossRefGoogle Scholar
  84. Kawano, M., Tomita, K., and Kamino, Y. (1993) Formation of clay minerals during low temperature experimental alteration of obsidian. Clays and Clay Minerals, 41, 431–441.CrossRefGoogle Scholar
  85. Kloprogge, J.T. (1998) Synthesis of smectites and porous pillared clay catalysts: A review. Journal of Porous Materials, 5, 5–41.CrossRefGoogle Scholar
  86. Kloprogge, J.T. and Vogels, R.J.M.J. (1995) Hydrothermal synthesis of ammonium-beidellite. Clays and Clay Minerals, 43, 135–137.CrossRefGoogle Scholar
  87. Kloprogge, J.T., van der Eerden, A.M.J., Jansen, J.B.H., and Geus, J.W. (1990a) Hydrothermal synthesis of Na-beidellite. Geologie en Mijnbouw, 69, 351–357.Google Scholar
  88. Kloprogge, J.T, Jansen, J.B.H., and Geus, J.W. (1990b) Characterization of synthetic Na-beidellite. Clays and Clay Minerals, 38, 409–414.CrossRefGoogle Scholar
  89. Kloprogge, J.T., Breukelaar, J., Jansen, J.B.H., and Geus, J.W. (1993a) Development of ammonium-saponites from gels with variable ammonium concentration and water content at low temperatures. Clays and Clay Minerals, 41, 103–110.CrossRefGoogle Scholar
  90. Kloprogge, J.T., van der Eerden, A.M.J., Jansen, J.B.H., Geus, J.W., and Schuiling, R.D. (1993b) Synthesis and paragenesis of Na-beidellite as function of temperature, water pressure and sodium activity. Clays and Clay Minerals, 41, 423–430.CrossRefGoogle Scholar
  91. Kloprogge, J.T., Breukelaar, J., Geus, J.W., and Jansen, J.B.H. (1994a) Characterization of Mg-saponites synthesized from gels containing amounts of Na+, K+, Rb+, Ca2+, Ba2+, or Ce4+ equivalent to the CEC of the saponite. Clays and Clay Minerals, 42, 18–22.CrossRefGoogle Scholar
  92. Kloprogge, J.T., Breukelaar, J., Wilson, A.E., Geus, J.W., and Jansen, J.B.H. (1994b) Solid-state nuclear magnetic resonance spectroscopy on synthetic ammonium/aluminum-saponite. Clays and Clay Minerals, 42, 416–420.CrossRefGoogle Scholar
  93. Koizumi, M. and Roy, R. (1959) Synthetic montmorillonoids with variable exchange capacity. American Mineralogist, 44, 788–805.Google Scholar
  94. Komarneni, S. (1989) Mechanisms of palygorskite and sepiolite alteration as deduced from solid-state 27Al and 29Si nuclear magnetic resonance spectroscopy. Clays and Clay Minerals, 37, 469–473.CrossRefGoogle Scholar
  95. Komarneni, S. and Breval, E. (1985) Characterization of smectites synthesized from zeolites and mechanism of smectite synthesis. Clay Minerals, 20, 181–188.CrossRefGoogle Scholar
  96. Komarneni, S. and Roy, D.M. (1983) Alteration of clay minerals and zeolites in hydrothermal brines. Clays and Clay Minerals, 31, 383–391.CrossRefGoogle Scholar
  97. Kuchta, L. and Fajnor, V.S. (1988) Optimal conditions for hydrothermal synthesis of saponite. Chemicke Zvesti, 42, 339–345.Google Scholar
  98. Levinson, A.A. and Day, J.J. (1968) Low temperature hydro-thermal synthesis of montmorillonite, ammonium-micas and ammonium-zeolites. Earth and Planetary Science Letters, 5, 52–54.CrossRefGoogle Scholar
  99. Levinson, A.A. and Vian, R.W. (1966) The hydrothermal synthesis of montmorillonite group minerals from kaolinite, quartz and various carbonates. American Mineralogist, 51, 495–498.Google Scholar
  100. Li, L., Liu, X., Ge, Y., Xu, R., Rocha, J., and Klinowski, J. (1993) Structural studies of pillared saponite. Journal of Physical Chemistry, 97, 10389–10393.CrossRefGoogle Scholar
  101. Loewenstein, W. (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates. American Mineralogist, 39, 92–96.Google Scholar
  102. Luca, V., Chen, X., and Kevan, L. (1991) Characterization of Cu(II)-substituted fluorohectorite clay and interaction with adsorbates by electron spin resonance, electron spin echo modulation, and infrared spectroscopies. Chemistry of Materials, 3, 1073–1081.CrossRefGoogle Scholar
  103. Luca, V., Kevan, L., Rhodes, C.N., and Brown, D.R. (1992) A synthetic Zn-substituted smectite clay alkylation catalyst. Clay Minerals, 27, 515–519.CrossRefGoogle Scholar
  104. Luca, V., Maclachlan, D.J., Howe, R.F., and Bramley, R. (1995) Synthesis and characterization of a (Zn, Ti)- substituted layered silicate. Journal of Materials Chemistry, 5, 557–564.CrossRefGoogle Scholar
  105. Luth, W.C. and Ingamells, C.O. (1965) Gel preparation of starting materials for hydrothermal experimentation. American Mineralogist, 50, 255–258.Google Scholar
  106. Miller, J.L. and Johnson, R.C. (1962) The synthesis and properties of a fluormica, intermediate between fluortaeniolite and fluorhectorite. American Mineralogist, 47, 1049–1054.Google Scholar
  107. Mizutani, T., Fukushima, Y., Okada, A., Kamigaito, O., and Kobayashi, T. (1991) Synthesis of 1:1 and 2:1 iron phyllosilicates and characterization of their iron state by Mössbauer spectroscopy. Clays and Clay Minerals, 39, 381–386.CrossRefGoogle Scholar
  108. Mosser, C., Mestdagh, M., Decarreau, A., and Herbillon, A.J. (1990) Spectroscopic (ESR, EXAFS) evidence of Cu for (Al-Mg) substitution in octahedral sheets of silicates. Clay Minerals, 25, 271–282.CrossRefGoogle Scholar
  109. Murray, H.H. (1995) Clays in industry and the environment. In Clays: Controlling the Environment, Proceedings of the 10th International Clay Conference, Adelaide, Australia, 1993, G.J. Churchman, R.W. Fitzpatrick, and R.A. Eggleton, eds. CSIRO Publishing, Melbourne, Australia, 49–55.Google Scholar
  110. Nakazawa, H., Yamada, H., Yoshioka, K., Adachi, M., and Fujita, T. (1991) Montmorillonite crystallization from glass. Clay Science, 8, 59–68.Google Scholar
  111. Nakazawa, H., Yamada, H., and Fujita, T. (1992) Crystal synthesis of smectite applying very high pressure and temperature. Applied Clay Science, 6, 395–401.CrossRefGoogle Scholar
  112. Neumann, B.S. (1965) Behavior of a synthetic clay in pigment dispersions. Rheologica Acta, 4, 250–255.CrossRefGoogle Scholar
  113. Neumann, B.S. (1971) Synthetic hectorite-type clay minerals. US Patent 3,586,478. Date Issued: 22 June.Google Scholar
  114. Neumann, B.S. (1972) Synthetic clay-like minerals of the smectite type and method of preparation. US Patent 3,671,190. Date Issued: 20 June.Google Scholar
  115. Neumann, B.S. and Sansom, K.G. (1970) The formation of stable sols from Laponite, a synthetic hectorite-like clay. Clay Minerals, 8, 389–404.CrossRefGoogle Scholar
  116. Neumann, B.S. and Sansom, K.G. (1976) Synthesis of hydrous magnesium silicates. US Patent 3,954,943. Date Issued: 4 May.Google Scholar
  117. Noll, W. (1936) Über die Bildungsbedingungen von Kaolin, Montmorillonit, Sericit, Pyrophyllit und Analcim. Tschermaks Mineralogische und Petrologische Mitteilungen, 48, 210–247.Google Scholar
  118. Norton, F.H. (1939) Hydrothermal alteration of clay minerals in the laboratory. American Mineralogist, 24, 1–17.Google Scholar
  119. Norton, F.H. (1941) Hydrothermal alteration of clay minerals in the laboratory, part II. American Mineralogist, 26, 1–17.Google Scholar
  120. Orlemann, J.K. (1972) Process for producing synthetic hectorite-type clays. US Patent 3,666,407. Date Issued: 30 May.Google Scholar
  121. Otsubo, Y. and Kato, C. (1954) Hydrothermal synthesis of montmorillonite-type silicates. III. Journal of the Chemical Society of Japan, 75, 456–459.Google Scholar
  122. Plee, D., Schutz, A., Borg, F., Poncelet, G., Jacobs, P., Gati-neau, L., and Fripiat, J.J. (1984) Zeolite-like materials from clays. French Patent 2,563,446.Google Scholar
  123. Plee, D., Gatineau, L., and Fripiat, J.J. (1987) Pillaring processes of smectites with and without tetrahedral substitu tions. Clays and Clay Minerals, 35, 81–88.CrossRefGoogle Scholar
  124. Röbschläger, K.H.W., Emeis, C.A., and van Santen, R.A. (1984) On the hydroisomerisation activity of nickel-substituted mica montmorillonite. Journal of Catalysis, 86, 1–8.CrossRefGoogle Scholar
  125. Roy, R. (1954) The application of phase equilibrium data to certain aspects of clay mineralogy. Clays and Clay Minerals, 2, 124–140.CrossRefGoogle Scholar
  126. Roy, D.M. and Mumpton, F.A. (1956) Stability of minerals in the system ZnO-SiO2-H2O. Economic Geology, 51, 432–443.CrossRefGoogle Scholar
  127. Roy, D.M. and Roy, R. (1952) Studies in the system MgO-Al2O3-SiO2-H2O. Bulletin of the Geological Society of America, 63, 1293–1294 (abstract).Google Scholar
  128. Roy, D.M. and Roy, R. (1955) Synthesis and stability of minerals in the system MgO-Al2O3-SiO2-H2O. American Mineralogist, 40, 147–178.Google Scholar
  129. Roy, R. and Sand, L.B. (1956) A note on some properties of synthetic montmorillonites. American Mineralogist, 41, 505–509.Google Scholar
  130. Roy, R. and Tuttle, O.F. (1956) Investigations under hydrothermal conditions. Physics and Chemistry of the Earth, 1, 138–180.CrossRefGoogle Scholar
  131. Sand, L.B. and Crowley, M.S. (1956) Comparison of a natural bentonite (Wyoming) with its synthetic analogue. Clays and Clay Minerals, 4, 96–100.CrossRefGoogle Scholar
  132. Sand, L.B., Roy R., and Osborn, E.E (1953) Stability relations of some minerals in the system Na2O-Al2O3-SiO2-H2O. Bulletin of the Geological Society of America, 64, 1469–1470 (abstract).Google Scholar
  133. Sand, L.B., Roy R., and Osborn, E.E (1957) Stability relations of some minerals in the Na2O-Al2O3-SiO2-H2O system. Economic Geology, 52, 169–179.CrossRefGoogle Scholar
  134. Schutz, A., Plee, D., Borg, F., Jacobs, P., Poncelet, G., and Fripiat, J.J. (1985) Acidity and catalytic properties of pillared montmorillonite and beidellite. In Proceedings of the International Clay Conference, Denver 1985. L.G. Schultz, H. van Olphen, and F.A. Mumpton, eds. The Clay Minerals Society, Bloomington, Indiana, 305–310.Google Scholar
  135. Schutz, A., Stone, W.E.E., Poncelet, G., and Fripiat, J.J. (1987) Preparation and characterization of bidimensional zeolitic structures obtained from synthetic beidellite and hydroxy-aluminum solutions. Clays and Clay Minerals, 35, 251–261.CrossRefGoogle Scholar
  136. Shabtai, J., Rosell, M., and Tokarz, M. (1984) Cross-linked smectites III. Synthesisand properties of hydroxy-aluminum hectorites and fluorhectorites. Clays and Clay Minerals, 32, 99–107.CrossRefGoogle Scholar
  137. Shaikh, N.A. and Wik, N.G. (1986) Clay Minerals-Modern Society. Nordic Society of Clay Research, Uppsala, Sweden.Google Scholar
  138. Strese, H. and Hofmann, U. (1941) Synthesis of magnesium silicate gels with two-dimensional regular structure. Zeitschrift für Anorganische und Allgemeine Chemie, 247, 65–95.CrossRefGoogle Scholar
  139. Stubican, V. (1959) Clay mineral research at the Institute for Silicate Chemistry, Zagreb. Clays and Clay Minerals, 7, 295–302.CrossRefGoogle Scholar
  140. Suquet, H., de la Calle, C., and Pezerat, H. (1975) Swelling and structural organization of saponite. Clays and Clay Minerals, 23, 1–9.CrossRefGoogle Scholar
  141. Suquet, H., Iiyama, J.T., Kodama, H., and Pezerat, H. (1977) Synthesis and swelling properties of saponites with increasing layer charge. Clays and Clay Minerals, 25, 231–242.CrossRefGoogle Scholar
  142. Suquet, H., Malard, C., Copin, E., and Pezerat, H. (1981a) Variation du parametre. b et de la distance basal. d001 dans une serie de saponites a charge croissante—I. Etats hydrates. Clay Minerals, 16, 53–67.CrossRefGoogle Scholar
  143. Suquet, H., Malard, C., Copin, E., and Pezerat, H. (1981b) Variation du parametr. b et de la distance basal. d001 dans une serie de saponites a charge croissante—II. Etats ‘zero couche’. Clay Minerals, 16, 181–193.CrossRefGoogle Scholar
  144. Suquet, H., Prost, R., and Pezerat, H. (1982) Etude par spectroscopic infrarouge et diffraction X des interactions eaucation-feuillet dans les phases a 14.6, 12.2 et 10.1 Å d’une saponite-Li de synthese. Clay Minerals, 17, 231–241.CrossRefGoogle Scholar
  145. Taylor, J. and Neumann, B.S. (1968) The nature of synthetic swelling clays and their use in emulsion paint. Journal of the Oil and Colour Chemists’ Association, 51, 232–253.Google Scholar
  146. Thieme, J. and Niemeyer, J. (1995) X-ray microscopy studies of clay aggregates in aqueous environments. Euroclay ’95 Clays and Clay Sciences, Leuven, Belgium, August 20–24, Abstracts, 21.Google Scholar
  147. Tiller, K.G. and Pickering, J.G. (1974) The synthesis of zinc silicates at 20°C and atmospheric pressure. Clays and Clay Minerals, 22, 409–416.CrossRefGoogle Scholar
  148. Tomita, K., Yamane, H., and Kawano, M. (1993) Synthesis of smectite from volcanic glass at low temperature. Clays and Clay Minerals, 41, 655–661.CrossRefGoogle Scholar
  149. Torii, K. (1985) Synthesis of trioctahedral smectite. Journal of the Clay Science Society of Japan, 25, 71–78.Google Scholar
  150. Torii, K. and Iwasaki, T. (1986) Synthesis of new trioctahedral Mg-smectite. Chemistry Letters (Tokyo), 1986, 2021–2024.CrossRefGoogle Scholar
  151. Torii, K. and Iwasaki, T. (1987) Synthesis of hectorite. Clay Science, 7, 1–16.Google Scholar
  152. Torii, K., Asaka, M., and Hotta, M. (1983) Synthesis of silicates. Japanese Patent 58/185,431. Date Issued: 29 October.Google Scholar
  153. Tsunashima, A., Kanamaru, F., Ueda, S., Koizumi, M., and Matsushita, T. (1975) Hydrothermal syntheses of amino acid-montmorillonites and ammonium-micas. Clays and Clay Minerals, 23, 115–118.CrossRefGoogle Scholar
  154. Urabe, K., Koga, M., and Izumi, Y. (1989) Synthetic Ni-substituted saponite as a catalyst for selective dimerization of ethene. Journal of the Chemical Society, Chemical Communications, 1989, 807–808.CrossRefGoogle Scholar
  155. Usui, K., Sato, T., and Tanaka, M. (1985) Process for preparation of synthetic crystalline zinc silicate mineral. European Patent 0,165,647. Date Issued: 27 December.Google Scholar
  156. van Olphen, H. and Fripiat, J.J. (1979) Data Handbook for Clay Materials and Other Non-Metallic Minerals Pergamon Press, Oxford, 346 pp.Google Scholar
  157. van Santen, R.A., Röbschläger, K.H.W., and Emeis, C.A. (1985) The hydroisomerisation activity of nickel-substituted mica montmorillonite clay. In Solid State Chemistry in Catalysis, ACS Symposium Series 279, R.K. Grasselli and J.F. Brazdil, eds. American Chemical Society, Washington, DC, 275–291.CrossRefGoogle Scholar
  158. Vogels, R.J.M.J., Kerkhoffs, M.J.H.V., and Geus, J.W. (1995) Non-hydrothermal synthesis, characterisation and catalytic properties of saponite clays. Studies in Surface Science and Catalysis, 91, 1153–1161.CrossRefGoogle Scholar
  159. Vogels, R.J.M.J., Breukelaar, J., Kloprogge, J.T., Jansen, J.B.H., and Geus, J.W. (1997) Hydrothermal crystallization of ammonium-saponite at 200 °C and autogenous water pressure. Clays and Clay Minerals, 45, 1–7.CrossRefGoogle Scholar
  160. Weaver, C.E. and Pollard, L.D. (1973) The Chemistry of Clay Minerals. Elsevier, London, 213 pp.Google Scholar
  161. Xiang, Y. and Villemure, G. (1996) Electrodes modified with synthetic clay minerals: Electrochemistry of cobalt smectites. Clays and Clay Minerals, 44, 515–521.CrossRefGoogle Scholar
  162. Yamada, H. and Nakazawa, H. (1995) Smectite crystals: Mg-content dependency of formation at high pressure and high temperature. Euroclay ’95 Clays and Clay Sciences, Leuven, Belgium, August 20–24. Abstracts, 9–10.Google Scholar
  163. Yamada, H., Nakazawa, H., Yoshioka, K., and Fujita, T. (1991a) Smectites in the montmorillonite-beidellite series. Clay Minerals, 26, 359–369.CrossRefGoogle Scholar
  164. Yamada, H., Yoshioka, K., and Nakazawa, H. (1991b) Hydrothermal synthesis of beidellite from aluminosilicate glass by varying water/solid ratio. Mineralogical Journal, 15, 300–308.CrossRefGoogle Scholar
  165. Yamada, H., Azuma, N., and Kevan, L. (1994a) Electron spin resonance study of Ni(I) stabilized in nickel-substituted and nickel ion-exchanged synthetic hydroxyhectorites. Journal of Physical Chemistry, 98, 13017–13021.CrossRefGoogle Scholar
  166. Yamada, H., Nakazawa, H., and Hashizume, H. (1994b) Formation of smectite crystals at high pressures and temperatures. Clays and Clay Minerals, 42, 674–678.CrossRefGoogle Scholar
  167. Yamada, H., Nakazawa, H., Hashizume, H., Shimomura, S., and Watanabe, T. (1994c) Hydration behavior of Na-smectite crystals synthesized at high pressure and high temperature. Clays and Clay Minerals, 42, 77–80.CrossRefGoogle Scholar
  168. Yanagisawa, K.T., Kusunose, I.K., Ioku, K., Yamasaki, N., Malla, P.B., and Komarneni, S. (1995) Hydrothermal crystallization mechanism of Na beidellite from amorphous gel. Journal of Materials Science Letters, 14, 1770–1772.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1999

Authors and Affiliations

  • J. Theo Kloprogge
    • 1
  • Sridhar Komarneni
    • 2
  • James E. Amonette
    • 3
  1. 1.Centre for Instrumental and Developmental ChemistryQueensland University of TechnologyQueenslandAustralia
  2. 2.Intercollege Materials Research Laboratory and Department of AgronomyThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandUSA

Personalised recommendations