Advertisement

Clays and Clay Minerals

, Volume 45, Issue 6, pp 803–813 | Cite as

Cation Ordering in Synthetic Layered Double Hydroxides

  • M. Vucelic
  • W. Jones
  • G. D. Moggridge
Article

Abstract

A combined powder X-ray diffraction (XRD) and X-ray absorption (XAS) study of Fe(III) cation ordering within pyroaurite is described. It is concluded that there is no correlation between Fe(III) cation positions over distances of a few tens of angstroms, but that there is a very high level of local ordering, involving the absence of Fe(III)-Fe(III) neighbors. These observations are rationalized in terms of a significant frequency of lattice defects in the form of cation vacancies or Mg for Fe(III) substitutions. These results are expected to be generalizable to other M(II)/M(III) layered double hydroxides (LDHs), but are in contrast to the long-range cation ordering observed in Li/Al LDHs. This raises the interesting possibility of differing properties and stabilities based on the degree of cation ordering.

Key Words

Cation Ordering LDH Pyroaurite XAS XRD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allmann R. 1968. The structure of pyroaurite. Acta Crystallogr B24:972–977.CrossRefGoogle Scholar
  2. Allmann R. 1970. Doppelscbichtstukturen mit brucitähnlichen Schichtionen [Me(II)1-x Me(III)x (OH)2]x+. Chimia 24: 99–108.Google Scholar
  3. Bookin AS, Cherkashin VI, Drits VA. 1993. Polytype diversity of the hydrotalcite-like minerals. II. Determination of the polytypes of experimentally studied varieties. Clays Clay Miner 41(5):558–564.CrossRefGoogle Scholar
  4. Bookin AS, Drits VA. 1993. Polytype diversity of the hydrotalcite-like minerals. I. Possible polytypes and their diffraction features. Clays Clay Miner 41(5):551–557.CrossRefGoogle Scholar
  5. Borja M, Dutta PK. 1992. Fatty acids in layered metal hydroxides; membrane-like structure and dynamics. J Phys Chem 96:5434–5444.CrossRefGoogle Scholar
  6. Brindley GW, Kikkawa S. 1979. A crystal-chemical study of Mg, Al and Ni, Al hydroxy-perchlorates and hydroxy-car-bonates. Am Mineral 64:836–843.Google Scholar
  7. Chibwe K, Jones W. 1989. Intercalation of organic and inorganic anions into layered double hydroxides. J Chem Soc, Chem Commun 14:926–927.CrossRefGoogle Scholar
  8. De Waal SA, Viljoen EA. 1971. Nickel minerals from Bar-berton, South Africa. IV. Reevesite, a member of the hy-drotalcite group. Am Mineral 56:1077–1081.Google Scholar
  9. Drezdon MA. 1988. Synthesis of isopolymetalate-pillared Hydrotalcite via organic-anion-pillared precursors. Inorg Chem 27:4628–4632.CrossRefGoogle Scholar
  10. Drits VA, Sokolova TN, Sokolova GV, Cherkashin VI. 1987. New members of the hydrotalcite-manasseite group. Clays Clay Miner 35(6):401–417.CrossRefGoogle Scholar
  11. Dutta PK, Puri M. 1988. Anion exchange in lithium aluminium hydroxides. J Phys Chem 93:376–381.CrossRefGoogle Scholar
  12. Frondel C. 1941. Constitution and polymorphism of the py-roaurite and sjögrenite groups. J Mineral Soc Am 26(5): 295–315.Google Scholar
  13. Gastuche MC, Brown G, Mortland MM. 1967. Mixed magnesium-aluminium hydroxides. Clay Miner 7:177–192.CrossRefGoogle Scholar
  14. Hansen HCB, Taylor RM. 1990. Formation of synthetic analogues of double metal-hydroxy carbonate minerals under controlled pH conditions. Clay Miner 25:161–179.CrossRefGoogle Scholar
  15. Hansen HCB, Taylor RM. 1991. The use of glycerol intercalates in the exchange of CO32- with SO42-, NO3 or Clin pyroaurite-type compounds. Clay Miner 26:311–327.CrossRefGoogle Scholar
  16. Jones W. 1991. Utilising clays and layered solids. Univ of Wales Rev, Sci and Technol 8:45–52.Google Scholar
  17. Kuma K, Paplawsky W, Gedulin B, Arrhenius G. 1989. Mixed valence hydroxides as bioorganic host minerals. Origins of Life and Evolution of the Biosphere 19:573–602.CrossRefGoogle Scholar
  18. Miyata S. 1975. The synthesis of hydrotalcite-like compounds and their structure and physico-chemical properties. Clays Clay Miner 23:369–375.CrossRefGoogle Scholar
  19. Miyata S. 1980. Physico-chemical properties of synthetic hy-drotalcites in relation to composition. Clays Clay Miner 28: 50–56.CrossRefGoogle Scholar
  20. Pausch I, Lohse H-H, Schürmann K, Allmann R. 1986. Synthesis of disordered and Al-rich hydrotalcite-like compounds. Clays Clay Miner 34(5):507–510.CrossRefGoogle Scholar
  21. Reichle WT. 1985. Catalytic reactions by thermally activated, synthetic, anionic clay minerals. J Catal 94:547–557.CrossRefGoogle Scholar
  22. Serna CJ, Rendon JL, Iglesias JE. 1982. Crystal-chemical study of layered [Al2Li(OH)6]+ X−.nH2O. Clays Clay Miner 30(3): 180–184.CrossRefGoogle Scholar
  23. Sissoko I, Iyagba E.T, Sahai R, Biloen P. 1985. Anion intercalation and exchange in Al(OH)3-derived compounds. J Solid State Chem 60:283–288.CrossRefGoogle Scholar
  24. Taylor HFW. 1969. Segregation and cation ordering in sjögrenite and pyroaurite. Mineral Mag 37(287):338–342.CrossRefGoogle Scholar
  25. Taylor HFW. 1973. Crystal structures of some double hydroxide minerals. Mineral Mag 39(304):377–389.CrossRefGoogle Scholar
  26. Ulibarri MA, Hernandez MJ, Corneto J. 1987. Changes in textural properties derived from the thermal decomposition of synthetic pyroaurite. Thermochim Acta 63:154.Google Scholar
  27. Vucelic M, Moggridge GD, Jones W. 1995. The thermal properties of terephthalate and benzoate intercalated LDH. J Phys Chem 99(20):8328–8337.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1997

Authors and Affiliations

  • M. Vucelic
    • 1
  • W. Jones
    • 1
  • G. D. Moggridge
    • 2
  1. 1.Chemistry DepartmentUniversity of CambridgeCambridgeUK
  2. 2.Chemical Engineering DepartmentUniversity of CambridgeCambridgeUK

Personalised recommendations