Clays and Clay Minerals

, Volume 45, Issue 6, pp 789–802 | Cite as

Migration of Cations in Copper(II)-Exchanged Montmorillonite and Laponite Upon Heating

  • C. Mosser
  • L. J. Michot
  • F. Vlllieras
  • M. Romeo


Two clay minerals, a dioctahedral, Na-montmorillonite from Wyoming and a trioctahedral, synthetic Na-laponite, were exchanged by cupric (Cu(II)) ions and subsequently heated at 100 °C intervals up to 500 °C. The resulting materials were analyzed by chemical analysis, X-ray diffraction (XRD), cation exchange capacity (CEC) measurements, combined thermogravimetric and differential thermal analysis (TGA-DTA), infrared (IR) spectroscopy, electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS). Montmorillonite exhibits a well-known Hoffmann-Klemen effect in that, when heated, cupric (Cu) ions migrate into the lacunae of the octahedral sheet, where they compensate the negative charge deficit of the clay layer. In the case of laponite, CEC measurements and spectroscopic measurements reveal that Cu ions migrate into the octahedral sheet where they replace Li and Mg ions. After heating at 200 °C, approximately half the interlayer Cu ions are exchanged. The exchange appears to be 1 Cu for 1 Li, resulting in a slight decrease of the negative charge of the layer. After heating at 300 °C, the remaining Cu ions are exchanged by either 1 Mg or 2 Li, which does not result in any further charge reduction. At 400 °C, some of the extracted Mg remigrates into the structure and exchanges some Li (1 Mg for 2 Li). The final product at 400 or 500 °C is then a Li-laponite with Cu(II) in the octahedral sheet.

Key Words

CEC Measurements Cu-Laponite Cu-Montmorillonite EPR Hofmann-Klemen Effect IR XPS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvero R, Alba MD, Castro MA, Trillo JM. 1994. Reversible migration of lithium in montmorillonites. J Phys Chem 98: 7848–7853.CrossRefGoogle Scholar
  2. Bérend I, Cases JM, François M, Uriot JP, Michot L, Masion A, Thomas F. 1995. Mechanism of adsorption-desorption of water vapor by homoionic montmorillonite: 2. The Li+, Na+, K+, Rb+ and Cs+ exchanged forms. Clays Clay Miner 43:324–336.CrossRefGoogle Scholar
  3. Besson G, Decarreau A, Manceau A, Sanz J, Suquet H. 1990. Organisation interne du feuillet. In: Decarreau A, editor. Matériaux argileux, structure, propriétés, applications. SFMC editions, p 1–162.Google Scholar
  4. Brindley GW, Lemaitre J. 1987. Thermal oxidation and reduction reactions of clay minerals. In: Newman ACD, editor. Chemistry of clays and clay minerals. Mineral Soc Monograph 6. p 319–370.Google Scholar
  5. Calvet R, Prost R. 1971. Cation migration into empty octahedral sites and surface properties of clays. Clays Clay Miner 19:175–186.CrossRefGoogle Scholar
  6. Cases JM, Bérend I, Besson G, François M, Uriot JP, Thomas F, Poirier JE. 1992. Mechanism of adsorption-desorption of water vapor by homoionic montmorillonite: 1. The sodium exchanged form. Langmuir 8:2730–2739.CrossRefGoogle Scholar
  7. Cases JM, Delon JF, François M, Mercier R. 1981. Organisation de l’eau dans les milieux poreux ou concentrés en solides. [Compte-rendu de fin d’étude d’une recherche financée par la Délégation Générale à la Recherche Scientifique et Technique], Nancy, France: INPL. 151 p.Google Scholar
  8. Farmer VC, Russell JD. 1971. Interlamellar complexes in layer silicates. The structure of water in lamellar ionic solutions. Trans Faraday Soc 67:2737–2749.CrossRefGoogle Scholar
  9. Greene-Kelly R. 1953. Irreversible dehydration in montmorillonite. Clay Miner Bull 2:52–56.CrossRefGoogle Scholar
  10. Greene-Kelly R. 1955. Dehydration of the montmorillonite minerals. Mineral Mag 30:604–615.Google Scholar
  11. Heller-Kallai L, Mosser C. 1995. Migration of Cu ions in Cu montmorillonite heated with and without alkali halides. Clays Clay Miner 43:738–743.CrossRefGoogle Scholar
  12. Hofmann U, Kiemen R. 1950. Verlust der Austauschfähigkeit von Lithium Ionen an Bentonit durch Erhitzung. T Anorg Chemie 262:95–99.CrossRefGoogle Scholar
  13. Kreit JF, Shainberg I, Herbillon AJ. 1982. Hydrolysis and decomposition of hectorite in dilute salt solutions. Clays Clay Miner 30:223–231.CrossRefGoogle Scholar
  14. McBride MB. 1982. Hydrolysis and dehydration reactions of exchangeable Cu2+ on hectorite. Clays Clay Miner 30:200–206.CrossRefGoogle Scholar
  15. McBride MB, Mortland MM. 1974. Copper(II) interactions with montmorillonite: Evidence from physical methods. Soil Sci Soc Am Proc 38:408–414.CrossRefGoogle Scholar
  16. Mosser C, Mestdagh M, Decarreau A, Herbillon AJ. 1990. Spectroscopic (ESR, EXAFS) evidence of Cu for (Al-Mg) substitution in octahedral sheets of smectites. Clay Miner 25:271–282.CrossRefGoogle Scholar
  17. Mosser C, Mosser A, Romeo M, Petit S, Decarreau A. 1992. Natural and synthetic copper phyllosilicates studied by XPS. Clays Clay Miner 40:593–599.CrossRefGoogle Scholar
  18. Petit S. 1990. Etude cristallochimique de kaolinites ferrifères et cuprifères de synthèse (150-250 °C) [Thèse de Doctorat]. Poitiers, France: Univ de Poitiers. 237 p.Google Scholar
  19. Petit S, Decarreau A, Mosser C, Ehret G, Grauby O. 1995. Hydrothermal synthesis (250 °C) of copper-substituted kaolinites. Clays Clay Miner 43:482–494.CrossRefGoogle Scholar
  20. Poinsignon C. 1978. Etude de l’eau d’hydratation des cations compensateurs de la montmorillonite [Thèse Docteur es Sciences]. Nancy, France: INPL. 242 p.Google Scholar
  21. Rémy JC, Orsini L. 1976. Utilisation du chlorure de cobal-tihexamine pour la détermination simultanée de la capacité d’échange et des bases échangeables dans les sols. Sciences du Sol 4:269–275.Google Scholar
  22. Stadler M, Schindler PW. 1993. Modeling of H+ and Cu2+ adsorption on calcium-montmorillonite. Clays Clay Miner 41:288–296.CrossRefGoogle Scholar
  23. Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE. 1978. Handbook of X-ray photoelectron spectroscopy. Muillenberg GE, editor. Minnesota: Perkin-Elmer Corporation, Physical Electronics Division. 190 p.Google Scholar

Copyright information

© The Clay Minerals Society 1997

Authors and Affiliations

  • C. Mosser
    • 1
  • L. J. Michot
    • 2
  • F. Vlllieras
    • 2
  • M. Romeo
    • 3
  1. 1.Centre de Géochimie de la Surface, UPR 6251 du CNRSStrasbourg CedexFrance
  2. 2.Laboratoire “Environment et Minéralurgie”, INPL-ENSG et URA 235 du CNRSVandoeuvre CedexFrance
  3. 3.Institut de Physique et Chimie des Matériaux, UMR 46 du CNRSStrasbourg CedexFrance

Personalised recommendations