Advertisement

Clays and Clay Minerals

, Volume 45, Issue 6, pp 781–788 | Cite as

Structure Refinement of Synthetic Deuterated Kaolinite by Rietveld Analysis Using Time-of-flight Neutron Powder Diffraction Data

  • Etsuo Akiba
  • Hiroshi Hayakawa
  • Shigenobu Hayashi
  • Ritsuro Miyawaki
  • Shinji Tomura
  • Yasuo Shibasaki
  • Fujio Izumi
  • Hajime Asano
  • Takashi Kamiyama
Article

Abstract

The crystal structure of synthetic deuterated kaolinite was refined by Rietveld analysis using time-of-flight (TOF) neutron powder diffraction data. For non-hydrogen atoms, Cl symmetry was assumed. Starting models were tested in which only the direction of O-D vectors was varied. The constraints were introduced to all Al-O, Si-O and O-D bonds. The refinement adopting the former gives Pl(C1), a = 5.169(1) Å, b = 8.960(2) Å, c = 7.410(2) Å, α = 91.26(2)°, ß = 104.99(2)°, γ = 89.93(1)°, Rwp = 3.17%, R1 = 5.78% and S = 1.34 with constraints of l(Al-O)= 1.93 ± 0.05 Å, l(Si-O)= 1.62 ± 0.03 Å and l(D-O) = 0.95 ± 0.15 Å. The inner O-D vector points toward the tetrahedral sheet. All inner-surface O-D groups form H bonding with basal O atoms in the next kaolinite layers. The results agreed with those obtained from natural kaolinite.

Key Words

Crystal Structure Kaolinite Neutron Powder Diffraction Rietveld Refinement Synthetic Kaolinite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams JM. 1983. Hydrogen atom positions in kaolinite by neutron profile refinement. Clays Clay Miner 31:352–356.CrossRefGoogle Scholar
  2. Adams JM, Hewat AW. 1981. Hydrogen atom positions in dickite. Clays Clay Miner 29:316–319.CrossRefGoogle Scholar
  3. Bish DL. 1993. Rietveld refinement of the kaolinite structure at 1.5K. Clays Clay Miner 41:738–744.CrossRefGoogle Scholar
  4. Bish DL, von Dreele RB. 1989. Rietveld refinement of non-hydrogen atomic positions in kaolinite. Clays Clay Miner 37:289–296.CrossRefGoogle Scholar
  5. Blount AM, Threadgold IM, Bailey SW. 1969. Refinement of the crystal structure of nacrite. Clays Clay Miner 17:185–194.CrossRefGoogle Scholar
  6. Collins DR, Catlow CRA. 1991. Energy-minimized hydrogen-atom positions of kaolinite. Acta Crystallogr B47:678–682.CrossRefGoogle Scholar
  7. Izumi F. 1993. Rietveld analysis program RIETAN and PRE-MOS and special application. In: Young RA, editor. The Rietveld method. Oxford: Oxford University Pr. p 232–253.Google Scholar
  8. Joswig W, Drits VA. 1986. The orientation of the hydroxyl groups in dickite by X-ray diffraction. N Jb Miner Mh 1986:19–22.Google Scholar
  9. McMurdie HF, Morris MC, Evans EH, Paretzkin B, Wong-Ng W, Hybbard CR. 1986. Methods of producing standard X-ray diffraction powder patterns. Powder Diffract 1:40–43.CrossRefGoogle Scholar
  10. Miyawaki R, Tomura S, Samejima S, Okazaki M, Mizuta H, Maruyama S, Shibasaki Y. 1991. Effects of solution chemistry on the hydrothermal synthesis of kaolinite. Clays Clay Miner 39:498–508.CrossRefGoogle Scholar
  11. Plançon A, Giese RF, Snyder R. 1988. The Hinckley index for kaolinite. Clay Miner 23:249–260.CrossRefGoogle Scholar
  12. Plançon A, Giese RF, Snyder R, Drits VA, Bookin AS. 1989. Stacking faults in the kaolin-group minerals: Defect structure of kaolinite. Clays Clay Miner 37:203–210.CrossRefGoogle Scholar
  13. Sakurai T. 1967. In: Universal crystallographic computation program system (I). Crystallogr Soc Jpn. p 76 [in Japanese].Google Scholar
  14. Shibasaki Y, Tomura S, Miyawaki R, Maeda M, Inukai K, Oda K. 1992. Synthesis technology of kaoliniteic clay. In: Nagasawa K, editor. Proc Workshop WB-1, Clay minerals: Their natural resources and uses; 29th Int Geol Cong; 1992; Nagoya, Japan, p 137–143.Google Scholar
  15. Suitch PR, Young RA. 1983. Atom positions in highly ordered kaolinite. Clays Clay Miner 31:357–366.CrossRefGoogle Scholar
  16. Watanabe N, Asano H, Iwasa H, Satoh S, Murata H, Karahashi K, Tomiyoshi S, Izumi F, Inoue K. 1987. High resolution neutron powder diffractometer with a solid methane moderator at pulsed spallation neutron source. Jpn J Appl Phys 26:1164–1169.CrossRefGoogle Scholar
  17. Young RA, Hewat AW. 1988. Verification of the triclinic crystal structure of kaolinite. Clays Clay Miner 36:225–232.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1997

Authors and Affiliations

  • Etsuo Akiba
    • 1
  • Hiroshi Hayakawa
    • 1
  • Shigenobu Hayashi
    • 1
  • Ritsuro Miyawaki
    • 2
  • Shinji Tomura
    • 2
  • Yasuo Shibasaki
    • 2
  • Fujio Izumi
    • 3
  • Hajime Asano
    • 4
  • Takashi Kamiyama
    • 4
  1. 1.National Institute of Materials and Chemical ResearchTsukuba, IbarakiJapan
  2. 2.National Industrial Research Institute of NagoyaKitaku, NagoyaJapan
  3. 3.National Institute for Research in Inorganic MaterialsTsukuba, IbarakiJapan
  4. 4.Institute for Materials ScienceUniversity of Tsukuba, TenoudaiTsukubaJapan

Personalised recommendations