Advertisement

Clays and Clay Minerals

, Volume 45, Issue 6, pp 773–780 | Cite as

Ca-Rectorite from Sano Mine, Nagano Prefecture, Japan

  • Toshihiko Matsuda
  • Hideomi Kodama
  • Ann Fook Yang
Article

Abstract

Rectorites containing various amounts of Ca were found at the Sano Mine, Nagano Prefecture, Japan. The Ca content in nonexchangeable form varied from 1.0 to 3.9% CaO. With more than 3.4%, they may be called Ca-rectorite. Chemical data of the most Ca-rich sample showed that Ca was the dominant interlayer cation, and gave a structural formula of (Mg0.16)EX(Ca0.59Na0.27K0.17[Al3.94Mg0.08 Feo0.07Ti0.01](Si5.85Al2.15)O20(OH)4. This sample is apparently the most Ca-rich rectorite reported to date. The Greene-Kelly test and an intercalation examination by octadecylammonium indicated that the expandable component layers were beidellitic. Assuming the tetrahedral composition of the expandable component layers are similar to the average tetrahedral composition of beidellite of (Si36Al0.4), the tetrahedral composition of the mica-like component layers was calculated to be (Si2.25Al1.75). This was closer to a brittle mica (margarite) than to a true mica. Examination of chemical data for several Ca-rectorite samples from different localities, including those from the Sano Mine, showed a trend of increasing Ca content as Al increased and Si decreased. Ca-rectorite exhibited characteristic infrared absorption bands at 480, 670–700 and 900–930 cm−1, which became more intense as Ca content increased. These bands also corresponded to major absorption bands of margarite.

Key Words

2:1 Layer Silicate Margarite Rectorite Regular Interstratification Smectite/Brittle Mica 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoki Y, Shimada N. 1965. Margarite from Shin-Kiura Mine Oita Prefecture, Japan. J Miner Soc Jpn 7:87–93 [in Japanese].Google Scholar
  2. Bailey SW, Brindley GW, Kodama H, Martin RT. 1982. Report of the Clay Minerals Society Nomenclature Committee 1980-1981; Nomenclature for regular interstratifications. Clays Clay Miner 30:76–78.CrossRefGoogle Scholar
  3. Bradley WE 1950. The alternating layer sequence of rectorite. Am Mineral 35:590–595.Google Scholar
  4. Brindley GW. 1956. Allevardite, a swelling double-layer mica mineral. Am Mineral 41:91–103.Google Scholar
  5. Brindley GW, Sandalaki Z. 1963. Structure, composition and genesis of some long-spacing mica-like minerals. Am Mineral 48:138–149.Google Scholar
  6. Brown G, Weir AH. 1963. The identity of rectorite and allevardite. In: Rosenquist Th, Groff-Peterson P, editors. Proc Int Clay Conf 1963; Stockholm. New York: Pergamon Pr. p 27–35.Google Scholar
  7. Cole WF. 1966. A study of a long-spacing mica-like mineral. Clay Miner 6:261–281.CrossRefGoogle Scholar
  8. Deer WA, Howie RA, Zussman J. 1962. Sheet silicates. Rockforming minerals. vol.3. New York: J Wiley. 270 p.Google Scholar
  9. Eberl D. 1978. The reaction of montmorillonite to mixed-layer clay; the effect of interlayer alkali and alkaline earth cations. Geochim Cosmochim Acta 42:1–7.CrossRefGoogle Scholar
  10. Farmer VC, Russell JD. 1964. The infra-red spectra of layer silicate. Spectrochim Acta 20:1149–1173.CrossRefGoogle Scholar
  11. Frank-Kamenetskij VA, Kotof N, Goilo E, Klotchkova G. 1973. Some aspects of structural transformations of clay minerals under hydrothermal conditions. Proc Int Clay Conf; 1972; Madrid. Madrid: Div Ciencias, CSIC. p 303–312.Google Scholar
  12. Greene-Kelly R. 1953. The identification of montmorillo-noids in clays. J Soil Sci 4:233–237.CrossRefGoogle Scholar
  13. Greene-Kelly R. 1957. The differential thermal investigation of clays. Mackenzie RC, editor. London: Mineral Soc. p 140–164.Google Scholar
  14. Guggenheim S, Bailey SW. 1975. Refinement of the margarite structure in subgroup symmetry. Am Mineral 60:1023–1029.Google Scholar
  15. Henin S, Esquevin J, Caillere S. 1954. Sur la fibrosité de certains mineraux de nature montmorillonitique. Bull Soc Franc Mineral 77:491–499.Google Scholar
  16. Heystek H. 1957. An occurrence of regularly mixed-layer clay mineral. Mineral Mag 30:400–408.Google Scholar
  17. Inoue H. 1963. Pyrophyllite deposit of the Sano Mine, Ya-manouchi, Nagano Prefecture, Japan. Repts Undergr Res Nagano Pref. p 11–18.Google Scholar
  18. Kodama H. 1966. The nature of the component layer of rectorite. Am Mineral 51:1035–1055.Google Scholar
  19. Kodama H. 1985. Infrared spectra of minerals. Agriculture Canada Techn Bull 1985-1E. 197 p.Google Scholar
  20. Kodama H, Shimoda S, Sudo T. 1969. Hydrous mica complex; Their structure and chemical composition. In: Heller L, editor. Proc Int Clay Conf; 1969; Tokyo. Jerusalem: Israel Univ Pr. p 9–18.Google Scholar
  21. Lagaly G. 1979. The “layer charge” of regularly interstratified 2/1-clay minerals. Clays Clay Miner 27:1–10.CrossRefGoogle Scholar
  22. Lagaly G, Weiss A. 1969. Determination of the layer charge in mica-type layer silicates. In: Heller L, editor. Proc Int Clay Conf; 1969; Tokyo. Jerusalem: Israel Univ Pr. p 61–80.Google Scholar
  23. Matsuda T. 1984. The mineralogical study on regularly inter-stratified dioctahedral mica-smectites. Clay Sci 6:117–148.Google Scholar
  24. Matsuda T 1988. Beidellite from the Sano Mine, Nagano Prefecture, Japan. Clay Sci 7:151–159.Google Scholar
  25. Matsuda T. 1991. Carich 25 Å minerals. J Clay Soc Jpn 30: 221–228 [in Japanese with English abstract].Google Scholar
  26. Matsuda T, Henmi K. 1974. Syntheses of interstratified minerals from kaolin with addition of various cations. J Miner Soc Jpn 11 Spec Issue: 152–161 [in Japanese].Google Scholar
  27. Matsuda T, Henmi K. 1983. Synthesis and properties of regularly interstratified 25 Å minerals. Clay Sci 6:51–66.Google Scholar
  28. Matsuda T, Nagasawa K, Tsuzuki Y. 1981. Regularly interstratified dioctahedral mica-smectite from roseki deposits in Japan. Clay Miner 16:91–102.CrossRefGoogle Scholar
  29. Nishiyama T, Shimoda S. 1981. Ca-bearing rectorite from Tooho mine, Japan. Clays Clay Miner 29:236–240.CrossRefGoogle Scholar
  30. Pevear DR, Williams VE, Mustoen GE. 1980. Kaolinite, smectite and K-rectorite in bentonites: Relation to coal rank at Tulameem, British Columbia. Clays Clay Miner 28:241–254.CrossRefGoogle Scholar
  31. Post JL, Nobel PN. 1993. The near-infrared combination band frequencies of dioctahedral smectites, mica, and illites. Clays Clay Miner 41:639–644.CrossRefGoogle Scholar
  32. Rateyev MA, Gradsusov BP, Kheilov MB. 1969. Potassium rectorite from the Upper Carboniferous of the Samarskaya Luka (Samara Bend of the Volga). Dokl Akad Nauk SSSR 185:116–119.Google Scholar
  33. Vali H, Hesse R, Kodama H. 1992. Arrangement of n-alkylammonium ions in phlogopite and vermiculite: An XRD and TEM study. Clays Clay Miner 40:240–245.CrossRefGoogle Scholar
  34. Weir AH, Greene-Kelly R. 1962. Beidellite. Am Mineral 47: 137–146.Google Scholar

Copyright information

© The Clay Minerals Society 1997

Authors and Affiliations

  • Toshihiko Matsuda
    • 1
  • Hideomi Kodama
    • 1
  • Ann Fook Yang
    • 2
  1. 1.Centre for Land and Biological Resources ResearchAgriculture and Agri-food CanadaOttawaCanada
  2. 2.Plant Research CentreAgriculture and Agri-food CanadaOttawaCanada

Personalised recommendations