Clays and Clay Minerals

, Volume 44, Issue 6, pp 843–850 | Cite as

Alunite, Natroalunite and Hydrated Halloysite in Carlsbad Cavern and Lechuguilla Cave, New Mexico

  • Victor J. Polyak
  • Necip Güven


Members of an alunite-natroalunite solid solution series occur in intimate association with hydrated halloysite in deposits within caves of the Guadalupe Mountains, namely Carlsbad Cavern and Lechuguilla Cave. The alunite and natroalunite crystals consist of cube-like rhombs; crystal diameters range from 0.5 to 8 µm. This mineral association is found in sediments within bedrock pockets, solution cavity fills, floor deposits and wall residues. Sulfur stable isotope values (δ34S, CTD) for cave alunite and natroalunite are negative [+0.1 to −28.9 per mill (‰); n = 12 and mean = 16.8‰] and are comparable to the cave gypsum and native sulfur values reported by other investigators. The association of alunite/natroalunite with hydrated halloysite in these cave deposits suggests that the cave-forming waters contained significant concentrations of sulfuric acid. Formation of these minerals is related to the excavation of the carbonate rocks that formed Carlsbad Cavern, Lechuguilla Cave and other caves of the Guadalupe Mountains. The sulfuric acid-bearing waters, when exposed to clay-rich sediments, converted clay minerals and quartz to alunite/natroalunite and hydrated halloysite.

Key Words

Alunite Carlsbad Cavern Caves Hydrated Halloysite Lechuguilla Cave Natroalunite Sulfuric Acid Sulfur Stable Isotopes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambers CP, Murray HH. 1995. The role of carbonate bedrock in the formation of indianaite halloysitic clays. Indiana Geological Survey Bulletin 65. Bloomington, IN: Indiana University. 29 p.Google Scholar
  2. Appleman DE, Evans HT. 1973. Job 9214: Indexing and least-squares refinement of powder diffraction data. US Geological Survey. Computer contribution 20. US National Technical Information Service. Document PB2-16188. 65 p.Google Scholar
  3. Bailey SW. 1993. Review of the structural relationships of the kaolin minerals. In: Murray HH, Bundy WM, Harvey CC, editors. Kaolin genesis and utilization. Boulder, CO: The Clay Minerals Society, p 25–42.Google Scholar
  4. Benoit PH. 1987. Adaption to microcomputer of the Appleman-Evans program for indexing and least-squares refinement of powder-diffraction data for unit-cell dimensions. Am Mineral 72:1018–1019.Google Scholar
  5. Berthier P. 1826. Analyse de l’halloysite. Ann Chim Phys 32:332–334.Google Scholar
  6. Bird MI, Chivas AR, McDougall I. 1990. An isotopic study of surficial alunite in Australia: 2. Potassium-argon geochronology. Chem Geol 80:133–145.Google Scholar
  7. Bretz JH. 1949. Carlsbad Caverns and other caves of the Guadalupe block, New Mexico. J Geol 57:447–463.CrossRefGoogle Scholar
  8. Buck MJ, Ford DC, Schwarcz HP. 1994. Classification of cave gypsum deposits derived from oxidation of H2S. In: Sasowsky ID, Palmer MV, editors. Breakthroughs in karst geomicrobiology and redox geochemistry. Special publication 1, Symposium of the Karst Waters Institute; 1984 Feb. 16–19; Colorado Springs, CO. Charles Town, WV: Karst Waters Inst, p 5–9.Google Scholar
  9. Chitale DV, Güven N. 1987. Natroalunite in a latérite profile over Deccan Trap Basalts at Matanumad, Kutch, India. Clays Clay Miner 35:196–202.CrossRefGoogle Scholar
  10. Cunningham KI, Northup DE, Pollastro WG, LaRock EJ. 1995. Bacteria, fungi and biokarst in Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico. Environ Geol 25:2–8.CrossRefGoogle Scholar
  11. Davies WE, Moore GW. 1957. Endellite and hydromagnesite from Carlsbad Caverns. Nat Speleol Soc Bull 19:24–27.Google Scholar
  12. Davis D. 1980. Cavern development in the Guadalupe Mountains: a critical review of recent hypotheses. Nat Speleol Soc Bull 42:42–48.Google Scholar
  13. Ford DC, Williams PW. 1992. Karst geomorphology and hydrology. New York: Chapman and Hall. 601 p.Google Scholar
  14. Goldbery R. 1980. Early diagenetic, Na-alunite in Miocene algal mat intertidal faciès, Ras Sudar, Sinai. Sedimentology 27:189–198.CrossRefGoogle Scholar
  15. Hill CA. 1981. Speleogenesis of Carlsbad Caverns and other caves of the Guadalupe Mountains. In: Beck BF, editor. Proceedings of the 8th International Congress of Speleologers; Bowling Green, KY. p 143–144.Google Scholar
  16. Hill CA. 1987. Geology of Carlsbad Caverns and other caves in the Guadalupe Mountains, New Mexico and Texas. New Mex Bur Mines Miner Resour Bull 117. 150 p.Google Scholar
  17. Hill CA. 1990. Sulfuric acid speleogenesis of Carlsbad Cavern and its relationship to hydrocarbons. Delaware Basin, New Mexico and Texas. Am Assoc Petrol Geol Bull 74: 1685–1694.Google Scholar
  18. Hill CA. 1995. Sulfur redox reactions: hydrocarbons, native sulfur, Mississippi Valley-type deposits, and sulfuric acid karst, Delaware Basin, New Mexico and Texas. Environ Geol 25:16–23.CrossRefGoogle Scholar
  19. Hill CA, Forti P. 1986. Cave minerals of the world. Huntsville, AL: National Speleological Society. 238 p.Google Scholar
  20. Höller H. 1967. Experimentelle bildung von alunit-jorosit durch die einwirkung von shwefelsaure auf mineralien und gesteine. Contrib Mineral Petrol 15:309–329.CrossRefGoogle Scholar
  21. Jagnow DH. 1977. Geologic factors influencing speleogenesis in the Capitan Reef complex, New Mexico and Texas [MS thesis]. Albuquerque, NM: Univ New Mexico. 197 p.Google Scholar
  22. Kato T. 1987. Further refinement of the goyazite structure. Mineral J 13:390–396.CrossRefGoogle Scholar
  23. Keller WD, Gentile RJ, Raesman AL. 1967. Allophane and Na-rich alunite from kaolinitic nodules in shale. J Sed Petrol 37:215–220.Google Scholar
  24. Khalaf FI. 1990. Diagenetic alunite in clastic sequences, Kuwait, Arabian Gulf. Sedimentology 37:155–164.CrossRefGoogle Scholar
  25. Kirkland DW. 1982. Origin of gypsum deposits in Carlsbad Caverns, New Mexico. New Mex Geol 4:20–21.Google Scholar
  26. Long DT, Fegan NE, McKee JD, Lyons WB, Hines ME, Macumber PG. 1992. Formation of alunite, jarosite and hydrous iron oxides in a hypersaline system: Lake Tyrrell, Victoria, Australia. Chem Geol 96:183–202.CrossRefGoogle Scholar
  27. Modreski PJ. 1989. Mineralogical studies of some caves in Colorado and New Mexico. New Mex Geol 11:50.Google Scholar
  28. Palmer AN, Palmer MV. 1992. Geochemical and petrologic observations in Lechuguilla Cave, New Mexico. In: Ogden AE, editor. Abstracts of the 1992 Friend of Karst; Cookeville, TN. p 25–26.Google Scholar
  29. Pisarowicz JA. 1994. Cueva de Villa Luz—An active case of H2S speleogenesis. In: Sasowsky ID, Palmer MV, editors. Breakthroughs in karst geomicrobiology and redox geochemistry. Special publication 1, Symposium of the Karst Waters Institute; 1984 Feb. 16–19; Colorado Springs, CO. Charles Town, WV: Karst Waters Inst, p 5–9.Google Scholar
  30. Polyak VJ, Giiven N. 1995. Dickite in caves of the Guadalupe Mountains in New Mexico. 32nd Annual Meeting of the Clay Minerals Society. Programs and Abstracts, p 100.Google Scholar
  31. Ross CS, Bergquist HR, Monroe WH, Fahey JJ, Ross M. 1968. Natroalunite in upper Cretaceous sedimentary rocks, north-central Texas. J Sed Petrol 38:1155–1165.Google Scholar
  32. Ross CS, Kerr PR 1935. Halloysite and allophane. US Geological Survey Professional Paper 185-G. 148 p.Google Scholar
  33. Rouchy J, Pierre C. 1987. Authigenic natroalunite in middle Miocene evaporites from the Gulf of Suez (Gemsa, Egypt). Sedimentology 34:807–812.CrossRefGoogle Scholar
  34. Rye RO, Bethke PM, Wasserman MD. 1992. The stable isotope geochemistry of acid sulfate alteration. Econ Geol 87: 225–262.CrossRefGoogle Scholar
  35. Spirakis C, Cunningham KI. 1992. Genesis of sulfur deposits in Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico. In: Wessel G, Winberley B, editors. Native sulfur—Developments in geology and exploration. Am Inst Min Metal Petrol Eng p 139–145.Google Scholar
  36. Stoffregen RE, Alpers CN. 1992. Observations on the unitcell dimensions, H2O contents, and 8D values of natural and synthetic alunite. Am Mineral 77:1092–1098.Google Scholar
  37. Stoffregen RE, Rye RO, Wasserman MD. 1994. Experimental studies of alunite: II. Rates of alunite-water alkali and isotope exchange. Geochim Cosmochim Acta 58:917–929.CrossRefGoogle Scholar
  38. Van Everdingen RO, Shakur MA, Krouse HR. 1985. Role of corrosion by H2SO4 fallout in cave development in a travertine deposit—Evidence from sulfur and oxygen isotopes. Econ Geol 49:205–211.Google Scholar
  39. Wasserman MD, Rye RO, Bethke PM, Arribas A. 1990. Methods for separation of alunite from associated minerals and subsequent analysis of D, 18OOH, 18OSO14, and 34S. Geol Soc Am Abstr Prog 22:A135.Google Scholar

Copyright information

© The Clay Minerals Society 1996

Authors and Affiliations

  • Victor J. Polyak
    • 1
  • Necip Güven
    • 1
  1. 1.Department of GeosciencesTexas Tech UniversityLubbockUSA

Personalised recommendations