Clays and Clay Minerals

, Volume 43, Issue 5, pp 630–636 | Cite as

Corrensite from Nasławice (Lower Silesia, Poland): Some Problems of Mineral Identification and Origin

  • ElŻbieta Dubińska
  • Paweł Bylina
  • Boris A. Sakharov


The corrensite from a chlorite vein-like rodingite blackwall in serpentinites has been studied. The proper identification of swelling layers in corrensite using heating at 500°C was ambiguous because of the spontaneous rehydration. Even K+-saturated samples heated to 500°C readily rehydrated after being cooled. This can be prevented if XRD patterns are recorded at 300°C, without cooling the sample. A standard heating at 500°C can result in partial decomposition of brucite-like sheet as evidenced by ASN simulation.

The ASN-calculated XRD patterns of contracted corrensite proved that an inhomogeneous distribution of heavy atoms (Fe, Ni, Mn, Cr etc.) between brucite-like sheet and talc-like layers and between two adjacent corrensite units in the interstratified mineral may result in the disappearance of low angle reflections (24 Å and 12 Å), which can lead to miscellaneous interpretation if distribution of heavy cations is not checked.

The corrensite occurred together with regular chlorite. However, it is assumed to be formed due to direct crystallization from late hydrothermal solutions as deduced from comparison of the Mg/(Mg + Fe) ratio in the corrensite, serpentinite and chlorite.

Key Words

Calculated X-ray patterns Corrensite Thermal contraction X-ray powder diffraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. April, R. H. 1980. Regularly interstratified chlorite-ver-miculite in contact metamorphosed red beds, Newark group, Connecticut Valley. Clays & Clay Miner. 28: 1–11.CrossRefGoogle Scholar
  2. April, R. H. 1981a. Clay petrology of the Upper Triassic/Lower Jurassic terrestial strata of the Newark supergroup, Connecticut Valley, U.S.A.. Sediment. Petr. 29: 283–307.CrossRefGoogle Scholar
  3. April, R. H. 1981b. Trioctahedral smectite and interstratified chlorite/smectite in Jurassic strata of the Connecticut Valley. Clays & Clay Miner. 29: 31–39.CrossRefGoogle Scholar
  4. Bailey S.W. 1975. Chlorites. In Soil Components, Vol. 2— Inorganic Components. J. E. Gieseking, ed. New York: Springer, 191–263.CrossRefGoogle Scholar
  5. Bailey, S. W. 1980. Structures of layer silicates. In Crystal Structure of Clay Minerals and their X-ray Identification. G. W. Brindley and G. Brown, eds. London: Mineralogical Society Monograph 5, 1–123.Google Scholar
  6. Bailey S. W. 1982. Nomenclature for regular interstratifications. A report of the AIPEA Nomenclature Committee presented by S. W. Bailey and adopted by General Assembly of AIPEA on September 12th 1981. Supplement to AIPEA Newsletters, 18: 1–12.Google Scholar
  7. Bettison-Varga L., I. D. R. MacInnon, and P. Schiffman. 1991. Integrated TEM, XRD and electron microprobe investigation of mixed-layer chlorite-smectite from the Point Sal Ophiolite, California. J. Metamorph. Geol. 9: 697–710.CrossRefGoogle Scholar
  8. Bevis, R. E., D. Robinson, and G. Rowbotham. 1991. Compositional variations in mafic phyllosilicates from regional low-grade metabasites and application of the chlorite geo-thermometer. J. Metamorph. Geol. 9: 711–721.CrossRefGoogle Scholar
  9. Bodine, M. W., and B. M. Madsen. 1987. Mixed-layer chlorite/smectites from a Pennsylvania evaporite cycle, Grand County, Utah. Proc. Internati. Clay Conf. Denver 1985. H. van Olphen and F. Mumpton, eds. Bloomington, Indiana: The Clay Minerals Society, 85–93.Google Scholar
  10. Brigatti, M. F., and L. Poppi. 1984. “Corrensite-like minerals” in the Taro and Ceno valleys, Italy. Clay Miner. 19: 56–66.CrossRefGoogle Scholar
  11. Buurman P., E. L. Meijer, and J. H. Wijck. van 1988. Weathering of chlorite and vermiculite in ultramafic rocks of Cabo Ortegal, northwestern Spain. Clay & Clay Miner. 36: 263–269.CrossRefGoogle Scholar
  12. Denoyer de Segonzac, D. G. de. 1969. Les minéraux argil-leux dans la diagènese-passage au mrtamorphisme. Mém. Serv. Carte Géol. Als. Lorr. 29: 1–320.Google Scholar
  13. Drits, V. A., and A. G. Kossovskaya. 1990. Clay Minerais: Smectites, Mixed-Layer Silicates (in Russian): Trans. Acad. Sci. U.S.S.R. 446: 1–214.Google Scholar
  14. Drits, V. A., and B. A. Sakharov. 1976. X-ray Structural Analysis of Mixed-layer Minerals (in Russian). Trans. Acad. Sci. U.S.S.R., 295: 1–252.Google Scholar
  15. Drits, V. A., and C. Tchoubar. 1990. X-ray Diffraction by Disordered Lamellar Structures. New York: Springer-Verlag, 1–371.Google Scholar
  16. Dubińska, E. 1984. Interstratified minerals with chlorite layers from Szklary near Ząbkowice Śląskie (Lower Silesia). Arch. Mineral. 39: 5–23.Google Scholar
  17. Dubińska, E. 1989. Clinozoisitic rodingites from Naslawice near Sobótka (Lower Silesia) Arch. Mineral 44: 41–54.Google Scholar
  18. Dubińska, E. 1995. Rodingites of the eastern part of Jor-danów-Gogo⌈ów serpentinite massif. Canad. Mineral. 33: 585–608.Google Scholar
  19. Ducloux J., A. Meunier, and B. Velde. 1976. Smectite, chlorite and a regular interlayered chlorite-vermiculite in soils developed on a small serpentinite body, Massif Central, France. Clay Miner. 11: 121–135.CrossRefGoogle Scholar
  20. Herbillon, A. J., and M. N. Makumbi. 1975. Weathering of chlorite in a soil from a chlorito-schist under humid tropical conditions. Geoderma 13: 89–104.CrossRefGoogle Scholar
  21. Inoue A., and M. Utada. 1991. Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita area, northeastern Honshu, Japan. Amer. Mineral. 76: 628–649.Google Scholar
  22. Jelitto J., E. Dubińska, A. Wiewióra, and P. Bylina. 1993. Layer silicates from serpentinite-pegmatite contact (Wiry, Lower Silesia, Poland). Clays & Clay Miner. 41: 693–701.CrossRefGoogle Scholar
  23. Johnson, L. J. 1964. Occurrence of regularly interstratified chlorite-vermiculite as a weathering product of chlorite in a soil. Amer. Mineral. 49: 552–572.Google Scholar
  24. Kawano M., and K. Tornita. 1991. Dehydration and rehydration of saponite and vermiculite. Clays & Clay Miner. 39: 174–183.CrossRefGoogle Scholar
  25. Khamkhadze, N. I., V. A. Drits, L. G. Daynyak, M. V. Slonimskaya, and A. L. Sokolova. 1981. New variety of mixed-layered chlorite-montmorillonite from Cretateous volca-nogenic series of Adzharo-Trialepskoy zone of Georgia (in Russian). Lithology and Economic Deposits 1: 130–135.Google Scholar
  26. Lippmann F., and H.-G. Pankau. 1988. Der Mineralbestand des mittleren Muschelkalkes von Nagold, Württemberg. N. Jb. Miner. Abh. 158: 257–292.Google Scholar
  27. Lippmann F., and H. Rothfuss. 1980. Tonminerale in Tav-eyannaz-Sandsteinen. Schweiz, mineral, petr. Mitt. 60: 1–29.Google Scholar
  28. MacEvan, D. M. C., and M. J. Wilson. 1980. Interlayer and intercalation complexes of clay minerals. Crystal Structures of Clay Minerals and Their X-ray Identification. G. W. Brindley and G. Brown, eds. Mineralogical Society Monograph 5, London: Mineralogical Society, 197–248.Google Scholar
  29. Mejsner, J. 1977. Regularly interstratified chlorite-swelling chlorite (corrensite) varieties from the Taro Valley, Italy. Arch. Mineral. 33: 13–24.Google Scholar
  30. Méring, J. 1949. X-ray diffraction in disordered layer structures. Acta Cryst. 2: 371–377.CrossRefGoogle Scholar
  31. Nakamuta, Y. 1981. A regularly interstratified chlorite/vermiculite in a talc-chlorite vein. Mem. Fac. Sci. Kyushu Univ., s. D: Geology 14: 253–279.Google Scholar
  32. Nishiyama T., K. Oinuma, and M. Sato. 1979. An interstratified chlorite-vermiculite in weathered red shale near Toyoma, Japan. International Clay Conference 1978, Oxford. M. M. Mortland and V. C. Farmer, eds. Developments in Sedimentology 27. Elsevier, 85–94.Google Scholar
  33. Proust D., J.-P. Eymery, and D. Beaufort. 1986. Supergene vermiculitization of a magnesian chlorite: Iron and magnesium removal processes. Clays & Clay Miner. 34: 572–580.CrossRefGoogle Scholar
  34. Reynolds, R. C., Jr. 1988. Mixed layer chlorite minerals. Reviews in Mineralogy, Vol. 19: Hydrous Phyllosilicates (Exclusive of Micas S. W. Bailey, ed. Chelsea, Michigan: Mineralogical Society of America, 601–629.CrossRefGoogle Scholar
  35. Robinson D., R. E. Bevins, and G. Rowbotham. 1993. The characterization of mafic phyllosilicates in low-grade me-tabasalts from eastern north Greenland. Amer. Mineral. 78: 377–399.Google Scholar
  36. Ross, G. J. 1975. Experimental alteration of chlorites into vermiculites by chemical oxidation. Nature 255: 133–134.CrossRefGoogle Scholar
  37. Ross, G. J., and H. Kodama. 1976. Experimental alteration of a chlorite into regularly interstratified chlorite-vermiculite by chemical oxidation. Clays & Clay Miner. 24: 183–190.CrossRefGoogle Scholar
  38. Ross, G. J., C. Wang, H. I. Ozkan, and H. W. Rees. 1982. Weathering of chlorite and mica in a New Brunswick podzol developed on till derived from chlorite-mica schist. Geoderma 27: 255–267.CrossRefGoogle Scholar
  39. Schiffman P., and G. O. Fridleifsson. 1991. The smectite-chlorite transition in drillhole NJ-15, Nesjavellir geother-mal field: XRD, BSE and electron microprobe investigations. J. Metamorph. Geology 9: 679–696.CrossRefGoogle Scholar
  40. Senkanyi, A. L., J. B. Dixon, and L. R. Hossner. 1981. Transformation of chlorite to smectite through interstratified minerals. Soil Sci. Soc. Amer. J. 45: 650–656.CrossRefGoogle Scholar
  41. Shau, Y.-H., D.R. Peacor, and E.J. Essene. 1990. Corrensite and mixed-layer chlorite/corrensite in metabasalt from northern Taiwan: TEM/AEM, EMPA, XRD, and optical studies. Contrib. Mineral. Petrol. 105: 123–142.CrossRefGoogle Scholar
  42. Shikazono N., and H. Kawahata. 1987. Compositional differences in chlorite from hydrothermally altered rocks and hydrothermal ore deposits. Can. Mineral. 25: 465–474.Google Scholar
  43. Shirozu H., T. Sakesegawa, N. Katsumoto, and M. Ozaki. 1975. Mg-chlorite and interstratified Mg-chlorite/saponite associated with Kuroko deposits. Clay Sci. 4: 305–321.Google Scholar
  44. Suquet H., J. T. Iiyama, H. Kodama, and H. Pezerat. 1977. Synthesis and swelling properties of saponites with increasing layer charge. Clays & Clay Miner. 25: 231–242.CrossRefGoogle Scholar
  45. Wiewióra A., and K. Szpila. 1975. Nickel containing regularly interstratified chlorite-saponite from Szklary, Lower Silesia, Poland. Clays & Clay Miner. 23: 91–96.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1995

Authors and Affiliations

  • ElŻbieta Dubińska
    • 1
  • Paweł Bylina
    • 2
  • Boris A. Sakharov
    • 3
  1. 1.Institute of Geochemistry, Mineralogy and Petrography, Geological FacultyWarsaw UniversityWarsawPoland
  2. 2.Institute of Geological SciencesPolish Academy of SciencesWarsawPoland
  3. 3.Institute of GeologyRussian Academy of SciencesMoscowRussia

Personalised recommendations