Clays and Clay Minerals

, Volume 43, Issue 5, pp 599–606 | Cite as

Iron Substitution in Soil and Synthetic Anatase

  • U. Schwertmann
  • J. Friedl
  • G. Pfab
  • A. U. Gehring


IronIII for TiIV substitution in the structure of pedogenic and synthetic anatase of up to Fe/ (Ti+Fe) 0.1 mol/mol was indicated by an increase in unit cell size as measured by XRD line shifts. Mössbauer- and electron paramagnetic resonance spectra at both, 298 K and 4.2 K supported this by the presence of signals typical for octahedrally coordinated FeIII in a diamagnetic matrix. Charge compensation was achieved by structural OH, as indicated by FTIR bands at 3360 and 960 cm−1, which were absent in pure anatase and which disappeared on heating. The weight loss on heating amounted to ca. 0.5 mol H2O/mol Fe. At 600°C structural Fe was ejected, the unit cell size decreased to that of pure anatase, and pseudobrookite, Fe2TiO5, was formed.

Key Words

Anatase Crystal chemistry EPR Fe substitution FTIR Mössbauer OH-O-substitution Pseudobrookite TA TEM XRD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Deer, W. A., R. A. Howie, and J. Zussman. 1962. Rock-forming minerals. Vol. 1-5. London: Longmans, Green & Co. Ltd.Google Scholar
  2. Fitzpatrick, R. W., J. Le Roux, and U. Schwertmann. 1978. Amorphous and crystalline titanium and iron-titanium oxides in synthetic preparations, at near ambient conditions, and in soil clays. Clays & Clay Miner. 26: 189–201.CrossRefGoogle Scholar
  3. Gainon D., and R. Lacroix. 1982. Electron paramagnetic resonance of Fe3+-Ion in anatase. Proc. Phys. Soc. 79: 658–659.CrossRefGoogle Scholar
  4. Gehring, A. U., R. Kathrein, and A. Relier. 1990. Activated state in the lepidocrocite structure during thermal treatment. Naturwissenschaften 77: 177–179.CrossRefGoogle Scholar
  5. Gurewitz E., and U. Atzmony. 1982. Mössbauer-effect study of Fe2TiO5, an anisotropic uniaxial spin-glass. Phys. Review B, Vol. 26, No. 11: 6093–6098.CrossRefGoogle Scholar
  6. Janik, L. J., and M. Raupach. 1977. An iterative, least-squares program to separate infrared absorption spectra into their component bands. CSIRO (Austr.) Div. Soil Tech. Pap. 35: 1–37.Google Scholar
  7. Köster, H. M. 1979. Die chemische Silikatanalyse. Berlin, Heidelberg, Springer, New York: 196 pp.CrossRefGoogle Scholar
  8. McBride, M. 1990. Electron spin resonance spectroscopy. In Instrumental Surface Analysis of Geological Material. D. L. Perry, ed. New York: VCH Publisher, 233–281.Google Scholar
  9. Mehra, O. P., and M. L. Jackson. 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays & Clay Miner. 7:317–327.CrossRefGoogle Scholar
  10. Milnes, A. R., and R. W. Fitzpatrick. 1989. Titanium and zirconium minerals. In Minerals in Soil Environments, 2nd ed. J. B. Dixon and S. B. Weed, eds. Soil Sci. Soc. Am. Book Series No. 1: 1131–1205.Google Scholar
  11. Schwertmann, U. 1984. Iron oxides in some ferruginous soils of India. Clay Res. 3: 23–30.Google Scholar
  12. Schwertmann U., and L. Carlson. 1994. Aluminum influence on iron oxides: XVII. Unit cell parameters and aluminum substitution of natural goethites. Soil Sci. Soc. Am. J. 58: 256–261.CrossRefGoogle Scholar
  13. Schwertmann U., R. M. Fitzpatrick, R. M. Taylor, and D. G. Lewis. 1978. The influence of aluminum on iron oxides. II: Preparation and properties of Al-substituted hematites. Clays & Clay Miner. 27: 105–112.CrossRefGoogle Scholar
  14. Stanjek H., and U. Schwertmann. 1992. The influence of aluminum on iron oxides. Part XVI: Hydroxyl and aluminum substitution in synthetic hematites. Clays & Clay Miner. 40: 347–354.CrossRefGoogle Scholar
  15. Teller, R. G., M. R. Antonio, A. E. Grau, M. Gueguin, and E. Kostiner. 1990. Structural analysis of metastable pseu-dobrookite ferrous titanium oxides with neutron diffraction and Mössbauer spectroscopy. Solid State Chem. 88: 334–350.CrossRefGoogle Scholar
  16. Thorp, J. S., H. S. Eggleston, T. A. Egerton, and A. J. Pearman. 1986. The distribution of iron centres in Fe-doped rutile powders. J. Mater. Sci. Lett. 5: 54–56.CrossRefGoogle Scholar
  17. Wickman, H. H., M. P. Klein, and D. A. Shirley. 1966. Paramagnetic hyperfine structure and relaxation effects in Mössbauer spectra: 57Fe in ferrichrome A. Phys. Rev. 152 No. 1: 345–357.CrossRefGoogle Scholar
  18. Zeese R., U. Schwertmann, G. F. Tietz, and U. Jux. 1994. Mineralogy and stratigraphy of three deep lateritic profiles of the Jos plateau (Central Nigeria). Catena 21: 195–214.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1995

Authors and Affiliations

  • U. Schwertmann
    • 1
  • J. Friedl
    • 1
  • G. Pfab
    • 1
  • A. U. Gehring
    • 1
  1. 1.Lehrstuhl für BodenkundeTechnische Universität MünchenFreising-WeihenstephanGermany

Personalised recommendations