Clays and Clay Minerals

, Volume 43, Issue 5, pp 562–568 | Cite as

Variable-Temperature Mössbauer Spectroscopy of Nano-Sized Maghemite and Al-Substituted Maghemites

  • G. M. Da Costa
  • E. De Grave
  • L. H. Bowen
  • P. M. A. De Barker
  • R. E. Vandenberghe


Synthetic aluminum-substituted maghemite samples, γ-(Fe1-xAlx)2O3, have been prepared by thermal decomposition of Al-lepidocrocite (γ-Fe1-xAlxOOH), with × = 0, 0.04, 0.06, 0.14 and 0.18. The particles are needle-shaped and the mean crystallite diameter along the [311] crystallographic direction was found to be between 2.0 and 5.0 nm. Mössbauer spectra were collected at 6 K and from 80 K up to 475 K at steps of 25 K. In a wide range of temperatures the spectra of the non-substituted sample consist of a superposition of a broad sextet and a superparamagnetic doublet, whereas for the Al-maghemites this range is much smaller. From the temperature variation of the fractional doublet area two different parameters were defined: the temperature corresponding to a 50/50 doublet-sextet spectrum (T1/2), and the temperature below which the doublet ceases to exist (T0). These two parameters (T1/2 and T0) decrease from 390 K and 92 K (Al-free sample), to 118 K and 64 K (4 mole % Al) and to 100 K and 48 K (18 mole % Al), respectively. The average hyperfine fields at 6 K undergo a steep drop in going from the Al-free sample (Hhf = 506 kOe) to the sample with 4 mole % Al (Hhf = 498 kOe), but for higher substitutions the effect is much smaller. The A- and B-site quadrupole splittings, obtained from the data between 220 K and 475 K, were found as: ΔEQ,A = 0.86 ± 0.04 mm/s and ΔEQ,B = 0.65 ± 0.04 mm/s for the 4 mole % Al sample. The characteristic Mössbauer temperature, determined from the temperature dependence of the average isomer shift, was found to be in the range of 500–600 K.

Key Words

Al substitution Maghemite Mössbauer effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bowen, L. H., E. De Grave, and A. M. Bryan. 1994. Mössbauer studies in external field of well crystallized Al-mag-hemites made from hematite. Hyperfine Interactions 94: 1977–1982.CrossRefGoogle Scholar
  2. Bryan, A. M. 1993. The thermal transformation of Al-sub-stituted hematite and lepidocrocite to maghemite studied by 57Fe Mössbauer spectroscopy. Ph.D. thesis. North Carolina State University, USA.Google Scholar
  3. da Costa, G. M., E. De Grave, A. M. Bryan, and L. H. Bowen. 1994a. Mössbauer studies of nano-sized aluminum-substituted maghemites. Hyperfine Interactions 94: 1983–1988.CrossRefGoogle Scholar
  4. da Costa, G. M., E. De Grave, L. H. Bowen, P. M. A. de Bakker, and R. E. Vandenberghe. 1994b. Temperature dependence of the hyperfine parameters of maghemite and Al-substituted maghemites. Phys. Chem. Minerals 22: 178–185.CrossRefGoogle Scholar
  5. da Costa, G. M., E. De Grave, L. H. Bowen, P. M. A. de Bakker, and R. E. Vandenberghe. 1994c. The center shift in Mössbauer spectra of Maghemite and Aluminum maghemites. Clays & Clay Miner. 42: 628–633.CrossRefGoogle Scholar
  6. de Bakker, P. M. A., E. De Grave, R. E. Vandenberghe, L. H. Bowen, R. J. Pollard, and R. M. Persoons. 1991. Mössbauer study of the thermal decomposition of lepidocrocite and characterisation of the decomposition products. Phys. Chem. Minerals 18: 131–143.CrossRefGoogle Scholar
  7. De Grave E., and A. Van Alboom. 1991. Evaluation of ferrous and ferric Mössbauer fractions. Phys. Chem. Minerals 18: 337–342.CrossRefGoogle Scholar
  8. Gillot B., and A. Rousset. 1990. On the limit of aluminum substitution in Fe3O4 and γ-Fe2O3. Phys. Status Solidi (a) 118: K5–K8.CrossRefGoogle Scholar
  9. Haneda K., and A. H. Morrish. 1977. Vacancy ordering in γ-Fe2O3 small particles. Solid State Comm. 22: 779–782.CrossRefGoogle Scholar
  10. Hendriksen, P. V., C. A. Oxborrow, S. Linderoth, S. Morup, M. Hanson, C. Johansson, F. Bødker, K. Davies, S. W. Charles, and S. Wells. 1993. Particle interaction effects in systems of ultrafine iron oxide particles. Nucl. Inst. Meth. Phys. Res. B76: 138–139.CrossRefGoogle Scholar
  11. Koch, J. W. C., M. B. Madsen, and S. Mørup. 1986. Decoupling of magnetically interacting crystallites of goethite. Hyperfine Interactions 28: 549–552.CrossRefGoogle Scholar
  12. Le Caer G., J. M. Dubois, H. Fischer, U. Gonser, and H. G. Wagner. 1984. On the validity of 57Fe hyperfine field distribution calculation from Mössbauer spectra of magnetic amorphous alloys. Nucl. Instr. Methods B5: 25–33.CrossRefGoogle Scholar
  13. Mørup S., and H. Topsøe. 1976. Mössbauer studies of thermal excitation in magnetically ordered microcrystals. Appl. Phys. 11: 63–66.CrossRefGoogle Scholar
  14. Prené, P., E. Tronc, J. P. Jolivet, J. Livage, R. Cherkaoui, M. Nogues, J. L. Dormann, and D. Fiorani. 1993. Magnetic properties of isolated γ-Fe2O3 particles. IEEE Trans. Magn. 29: 2658–2660.CrossRefGoogle Scholar
  15. Schwertmann, U. 1988. Some properties of soil and synthetic iron oxides. In Iron in Soils and Clay Minerals, J. W. Stucki, B. A. Goodman, and U. Schwertmann eds. Dordrecht: Reidel, pp. 203–250.CrossRefGoogle Scholar
  16. Van der Kraan, A. M. 1973. Mössbauer effect studies of surface ions of ultrafine a-Fe2O3 particles. Phys. Status Solidi (a) 18: 215–226.CrossRefGoogle Scholar
  17. Vandenberghe, R. E., and E. De Grave. 1989. Mössbauer studies of oxidic spinels. In Mössbauer Spectroscopy Applied to Inorganic Chemistry. G. J. Long and F. Grandjean eds. Vol 3, New York: Plenum Press, pp 59–182.CrossRefGoogle Scholar
  18. Wolska E., and U. Schwertmann. 1989. The vacancy ordering and distribution of aluminium ions in γ-(Fe,Al)2O3. Solid State Ionics 32/33: 214–218.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1995

Authors and Affiliations

  • G. M. Da Costa
    • 1
    • 2
  • E. De Grave
    • 1
    • 4
  • L. H. Bowen
    • 3
  • P. M. A. De Barker
    • 1
  • R. E. Vandenberghe
    • 1
  1. 1.Laboratory of MagnetismDepartment of Subatomic and Radiation Physics University of GentGentBelgium
  2. 2.On leave from Departamento de QuimicaUniversidade Federal de Ouro PretoOuro PretoBrazil
  3. 3.Department of ChemistryNorth Carolina State UniversityRaleighUSA
  4. 4.Research DirectorNational Fund for Scientific ResearchBelgium

Personalised recommendations