Advertisement

Clays and Clay Minerals

, Volume 43, Issue 5, pp 554–561 | Cite as

Acidity Of Montmorillonite-(Ce or Zr) Phosphate Cross-Linked Compounds

  • F. Del Rey-Bueno
  • A. García-Rodríguez
  • A. Mata-Arjona
  • F. J. Del Rey-Pérez-Caballero
Article

Abstract

The nature and number of acid sites per unit weight on a series of materials obtained by interaction of a montmorillonite with zirconium or cerium hydrogenphosphates precipitated in situ by reaction between their precursors have been investigated.

The quantitative determination of the surface acidity has been carried out by three different methods: titration with triethanolamine in aqueous media; TG analysis of the samples after n-butylamine treatment and vacuum desorption; and chemisorption of NH3 at 239.8 K. Additional information about the nature of the surface acid sites has been obtained from the IR spectra of the samples with bases adsorbed.

Results show that the acid site density on the montmorillonite-cerium or zirconium phosphate cross-linked compounds is greater than on the parent montmorillonite and increases as the content in tetravalent metal phosphate rises throughout the different series. Also the number of acid sites for the cerium phosphate-montmorillonite materials is lower than for zirconium ones and the characteristics obtained depend on the bases used for their evaluation.

The presence of two IR adsorption bands at 1400 and 3145 cm−1, assigned to the NH4+ ion, and the absence of the 1170–1361 cm−1 bands, characteristic of the NH3 adsorbed on a Lewis site, strongly suggest the Brönsted character of the acidity of these compounds.

Key Words

Layered phosphates Montmorillonite Surface acidity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberti G., U. Costantino, Di F. Gregorio, P. Galli, and E. Torracca. 1968. Crystalline insoluble salts of polybasic metals. III. Preparation and ion exchange properties of cerium (IV) phosphate of various crystallinites. J. Inorg. Nucl. Chem. 30: 295–304.CrossRefGoogle Scholar
  2. Alberti G., and U. Costantino. 1982. Intercalation Chemistry of Acid Salts of Tetravalent Metals with Layered Structure and Related Materials. In Intercalation Chemistry M. S. Whittingham and A. J. Jacobson eds. New York: Academic Press, 157.Google Scholar
  3. Benesi, H. A. 1957. Acidity of catalyst surfaces (1) acid strength from colors of adsorbed indicators. J. Phys. Chem. 61: 970.CrossRefGoogle Scholar
  4. Christensen, J. J., L. D. Hansen, and R. M. Izat. 1976. Handbook of proton ionization heat. New York: John Wiley and Sons, 16 pp.Google Scholar
  5. Clearfield A., and J. A. Stynes. 1964. The preparation of crystalline zirconium phosphate and some observations on its ion exchange behaviour. J. Inorg. Nucl. Chem. 26: 117–129.CrossRefGoogle Scholar
  6. Clearfield A., and R. A. Hunter. 1976. On the mechanism of ion exchange in zirconium phosphates. XIV. The effect of crystallinity on NH4 /VH+ exchange of α-zirconium phosphate. J. Inorg. Nucl. Chem. 38: 1085.CrossRefGoogle Scholar
  7. Davidov, A. A. 1990. Infrared Spectroscopy of Adsorbed Species on the Surface of Transition Metal Oxides. New York: John Wiley and Sons, 27–37.Google Scholar
  8. Forni, F. 1973. Comparison of the methods for the determination of surface acidity of solids catalysts. Surface acidity of solid catalysts. New York: Marcel Decker, 72 pp.Google Scholar
  9. Garcia-Rodriguez A., F. del Rey-Bueno, F. J. del Rey-Pérez-Caballero, M. D. Urena-Amate, and A. Mata-Arjona. 1995. Synthesis and characterization of montmorillonite-(Ce or Zr) phosphate crosslinked compounds. Mat. Chem. and Phys. 39(4): 269–277.CrossRefGoogle Scholar
  10. Hattori T., A. Ishiguro, and Y. Murakami. 1978. Acidity of crystalline zirconium phosphate. J. Inorg. Nucl. Chem. 40: 1107–1111.CrossRefGoogle Scholar
  11. Liansheng Li, Liu Xinsheng, Ge Ying, Li Liyun, and J. Klinowski. 1991. Intercalation and Pillaring of Zirconium Bis (monohydrogenphosphate) with NH2(CH3)3Si(OC2H5)3. J. Phys. Chem. 95: 5910–5914.CrossRefGoogle Scholar
  12. Little, L. H. 1966. Infrared Spectra of Adsorbed Species. New York: Academic Press. 344–350.Google Scholar
  13. McClellan, A. L., and H. F. Harnsberger. 1967. Cross-sectional Areas of Molecules Adsorbed on Solid Surfaces. J. Coll. and Interf. Sci. 23: 577–599.CrossRefGoogle Scholar
  14. Mapes, J. E., and R. P. Eischens. 1954. The infrared spectra of ammonia chemisorbed on cracking catalysts. J. Phys. Chem. Ithaca 58: 1059–1062.CrossRefGoogle Scholar
  15. Morimoto T., J. Imai, and M. Nagao 1974. Infrared spectra of n-butylamine adsorbed on silica-alumina. J. Physical Chem. 78(7): 704–708.CrossRefGoogle Scholar
  16. Mortland M., J. J. Fripiat, J. Chavssidon, and J. B. Uytterhoeven. 1963. Interaction between ammonia and the expanding latices of montmorillonite and vermiculite. J. Physical Chem. 67: 248–258.CrossRefGoogle Scholar
  17. Nakamoto, K. 1978. I.R. and Raman Spectra of Inorganic and Coordination Compounds. New York: Wiley.Google Scholar
  18. Peri, J. B. 1971. Surface Chemistry of AIPO4. A Mixed Oxide of Al and P. Discuss. Faraday Soc. 52: 55.CrossRefGoogle Scholar
  19. Pimentel, G. C., M. U. Bulanin, and M. Van Thiel. 1962. Infrared spectra of NH3 suspended in solid N. J. Chem. Phys. 36: 500.CrossRefGoogle Scholar
  20. Primo-Yufera E., and J. M. Carrasco-Dorrien. 1981. Química Agrícola I. Suelos y Fertilizantes (Spanish). Madrid: Alhambra, 276–279.Google Scholar
  21. Rey-Bueno, F. del., E. Villafranca-Sánchez, A. Mata-Arjona, E. González-Pradas, and A. García-Rodríguez. 1989. Syntheses and surface properties determination of the ammonium, methylamine and ethylamine phases of cerium (IV) and thorium (IV) phosphates. Mat. Chem. and Phys. 24: 99–109.CrossRefGoogle Scholar
  22. Sing, K. S. W., D. H. Everett, R. A. W. Haul, L. Moscoum, R. A. Pierotti, J. Rouquerol, and T. Simienwska. 1985. Reporting physisorption data for Gas/Solid systems. Pure and Appl. Chem. 57(4): 603–619.CrossRefGoogle Scholar
  23. Tamele, M. W. 1950. Chemistry of the surface and the activity of silica-alumina cracking catalysts. Disc. Faraday Soc. 8: 270–279.CrossRefGoogle Scholar
  24. Tsyganenko, A. A., D. V. Pozdnyakov, and V. N. Filimonov. 1975. Infrared study of surface species arising from ammonia adsorption on oxide surfaces. J. Molecular Structure 29:299–318.CrossRefGoogle Scholar
  25. Van Cauwelaert, F. H., F. Vermoortele, and J. B. Uytterhoeven. 1971. Infra-red Spectroscopic Study of the Adsorption of Amines on the A-Type and B-Type Hydroxyls of an Acrosil Silica Gel. Discuss. Faraday Soc. 52: 66.CrossRefGoogle Scholar
  26. Waddington, T. C. 1958. Preparation of tetramethilam-monium hydrogen dichloride and the structure of the hydrogen dichloride ion, HCL-2. J. Chem. Soc. 1708–1709. Weast R. C. 1978. Handbook of Chemistry and Physics. Boca Ratón: C.R.C. Press D-203.Google Scholar
  27. Wright, A. C., W. T. Granquist, and J. V. Kennedy. 1972. Catalysis by layer lattice silicates. I. The structure and thermal modification of a synthetic ammonium dioctahedral clay. J. Catal. 25: 65–83.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1995

Authors and Affiliations

  • F. Del Rey-Bueno
    • 1
  • A. García-Rodríguez
    • 1
  • A. Mata-Arjona
    • 1
  • F. J. Del Rey-Pérez-Caballero
    • 1
  1. 1.Departemento de Química Inorgánica, Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations