Advertisement

Clays and Clay Minerals

, Volume 43, Issue 2, pp 229–236 | Cite as

The Rheological and Colloidal Properties of Bentonite Dispersions in the Presence of Organic Compounds V. Bentonite and Sodium Montmorillonite and Surfactants

  • Thorsten Permien
  • Gerhard Lagaly
Article

Abstract

The influence of surfactants on the flow behavior of sodium montmorillonite dispersions (2% w/w) was studied for a cationic (cetylpyridinium chloride, CPCl) and an anionic surfactant (sodium dodecylsulfate, SDS). When the dispersion pHs were >3.5 and <7, CPCl concentrations >10−4 M increased the shear stress but the Bingham yield value remained virtually unchanged (τo ≈ 100 mPa). At pH ≈ 7, the shear stress and yield point decreased with increasing CPCl concentration (τo from 430 to 100 mPa). The flow properties of sodium calcium bentonite dispersions were independent of pH and CPCl concentrations ≤ 10−4 M; they increased modestly at higher concentrations. At pH < 4, SDS addition to the sodium montmorillonite dispersions increased the shear stress and yield value to a maximum value (τo = 2100 mPa) at 10−3 M SDS; higher SDS concentrations reduced the shear stress and yield value. At pH > 4, the flow values decreased to a minimum value at 10−2 M SDS (τo from 430 to 50 mPa). The flow of the sodium calcium bentonite dispersions at pH > 4 was independent of SDS concentrations ≤ 10−3 mole/liter; at higher SDS concentrations, the flow values increased more strongly in sodium calcium bentonite than in sodium montmorillonite dispersions.

Surfactants influence the flow behavior of sodium montmorillonite dispersions by their action on the card-house networks in strongly acidic medium and, at higher pH, by the electroviscous effect. At the highest surfactant concentrations without flocculation, the shear stress and yield value are increased by interacting chains of opposed particles.

Addition of the surfactants increases the salt (NaCl) stability of the dispersions because the adsorbed surface active agents influence the counterion distribution between the Stern and the diffuse ionic layer.

Key Words

Bentonite Cetylpyridinium chloride Coagulation Flow behavior Montmorillonite Sodium dodecylsulfate (SDS) Surfactants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandenburg, U., and G. Lagaly. 1988. Rheological properties of sodium montmorillonite dispersions. Appl. Clay Sci. 3: 263–279.CrossRefGoogle Scholar
  2. Callaghan, I. C, and R. H. Ottewill. 1974. Interparticle forces in montmorillonite gels. Disc. Faraday Soc. 57: 110–118.CrossRefGoogle Scholar
  3. Chan, D.Y.C., R.M. Pashley, and J.P. Quirk. 1984. Surface potentials derived from co-ion exclusion measurements on homoionic montmorillonite and illite. Clays & Clay Miner. 32: 131–138.CrossRefGoogle Scholar
  4. Chou Chang, F. R., and G. Sposito. 1994. The electrical double layer of a disc-shaped clay mineral particle: Effect of particle size. J. Colloid Interface Sci. 163: 19–27.CrossRefGoogle Scholar
  5. Fahn, R., A. Weiss, and U. Hofmann. 1953. Über die Thixotropie bei Tonen. Ber. Dtsch. Keram. Ges. 30: 21–25.Google Scholar
  6. Fitzsimmons, R. F., A. M. Posner, and J. P. Quirk. 1970. Electron microscopic and kinetic study of the flocculation of calcium montmorillonite. Israel J. Chem. 8: 301–314.CrossRefGoogle Scholar
  7. Fukushima, Y. 1984. X-ray diffraction study of aqueous montmorillonite emulsions (correctly: dispersions!) Clays & Clay Miner. 32: 320–326.CrossRefGoogle Scholar
  8. Güven, N. 1992a. Rheological aspects of aqueous smectite suspensions. In Clay- Water Interface and its Rheological Implications. N. Güven and R. M. Pollastro, eds. CMS workshop lectures, Vol. 4. Boulder, Colorado: The Clay Mineral Soc, 81–126.Google Scholar
  9. Hogg, R., T. W. Healy, and D. W. Fuerstenau. 1966. Mutual coagulation of colloidal dispersions. Trans. Farad. Soc. 62: 1638–1651.CrossRefGoogle Scholar
  10. Hofmann, U., and A. Hausdorf. 1945. Über das Sedi-mentvolumen und die Quellung von Bentonit. Kolloid Z. Z. Polymere 110: 1–17.CrossRefGoogle Scholar
  11. Hofmann, U., R. Fahn, and A. Weiss. 1957. Thixotropie bei Kaolinit und innerkristalline Quellung bei Montmoril-lonit. Kolloid Z.Z. Polymere 151: 97–115.CrossRefGoogle Scholar
  12. Hofmann, U. 1962. Die Tonminerale und die Plastizität des Tons. Keram. Z. 14: 14–19.Google Scholar
  13. Keller, W. D., and K. Matlack. 1990. The pH of clay suspensions in the field and laboratory, and methods of measurement of their pH. Appl. Clay Sci. 5: 123–133.CrossRefGoogle Scholar
  14. Keren, R., I. Shainberg, and E. Klein. 1988. Settling and flocculation value of sodium-montmorillonite particles in aqueous media. Soil Sci. Soc. Am. J. 52: 76–80.CrossRefGoogle Scholar
  15. Keren, R. 1989. Effect of clay charge density and adsorbed ions on the rheology of montmorillonite suspension. Soil Sci. Soc. Am. J. 53: 25–29.CrossRefGoogle Scholar
  16. Lagaly, G. 1986. Colloids. In Ullmann’s Encyclopedia of Industrial Chemistry, Vol. A 7, pp. 341–367.Google Scholar
  17. Lagaly, G. 1987. Clay-organic reactions: Problems and recent results. Proc. Internat. Clay Conf. Denver, 1985. L. G. Schultz, H. van Olphen, and F. A. Mumpton, eds. Bloomington, Indiana: Clay Minerals Soc, 343–351.Google Scholar
  18. Lagaly, G. 1994a. Layer charge determination by alkylammonium ions. In Charge Characteristics of 2:1 Clay Minerals. A. Mermut, ed. CMS workshop lectures, Vol. 6. Boulder, Colorado: The Clay Mineral Soc, pp. 1–46.Google Scholar
  19. Lagaly, G. 1994b. Surface and interlayer reactions: Bentonites as adsorbents. Prof. Internat. Clay Conf. Adelaide 1993. (in press.)Google Scholar
  20. Miller, S. E., and P. F. Low. 1990. Characterization of the electrical double layer of montmorillonite. Langmuir 6: 572–578.CrossRefGoogle Scholar
  21. Norrish, K. 1954. The swelling of montmorillonite. Disc. Farad. Soc. 18: 120–134.CrossRefGoogle Scholar
  22. Olphen van, H. 1956. Forces between suspended bentonite particles. Clay Miner. 4: 204–224.CrossRefGoogle Scholar
  23. Olphen van, H. 1964. Internal mutual flocculation in clay suspensions. J. Colloid Sci. 19: 313–322.CrossRefGoogle Scholar
  24. Olphen van, H. 1977. An Introduction to Clay Colloid Chemistry. New York: J. Wiley and Sons.Google Scholar
  25. O’Brien, N. R. 1971. Fabric of kaolinite and illite floccules. Clays & Clay Miner. 19: 353–359.CrossRefGoogle Scholar
  26. Permien, T., and G. Lagaly. 1994a. The rheological and colloidal properties of bentonite dispersions in the presence of organic compounds. I. Flow behaviour of sodium montmorillonite in water-alcohol. Clay Miner. 29: 751–760.Google Scholar
  27. Permien, T., and G. Lagaly. 1994b. The rheological and colloidal properties of bentonite dispersions in the presence of organic compounds. II. Flow behaviour of Wyoming bentonite in water-alcohol. Clay Miner. 29: 761–766.Google Scholar
  28. Permien, T. and G. Lagaly. 1994c The rheological and colloidal properties of bentonite dispersions in the presence of organic compounds. III. The effect of alcohols on the coagulation of sodium montmorillonite. Colloid Polymer Sci. 272: 1306–1312.CrossRefGoogle Scholar
  29. Permien, T., and G. Lagaly. 1994d. The rheological and colloidal properties of bentonites in the presence of organic compounds. IV. Sodium montmorillonite in the presence of acids. Appl. Clay Min. 9: 251–263.CrossRefGoogle Scholar
  30. Quirk, J. P. 1986. Soil permeability in relation to sodicity and salinity. Phil. Trans. R. Soc. Lond. A 316: 297–317.CrossRefGoogle Scholar
  31. Quirk, J. P., and R. S. Murray. 1991. Towards a model for soil structure behaviour. Aust. J. Soil Res. 29: 829–867.CrossRefGoogle Scholar
  32. Ramsay, J. D. F., and P. Lindner. 1993. Small-angle neutron scattering investigations of the structure of thixotropie dispersions of smectite clay colloids. J. Chem. Soc. Faraday Trans. 89: 4207–4214.CrossRefGoogle Scholar
  33. Rand, B., E. Pekenc, J. W. Goodwin, and R. W. Smith. 1980. Investigation into the existence of edge-face coagulated structures in Na-montmorillonite suspensions. J. Chem. Soc. Faraday I. 76: 225–235.CrossRefGoogle Scholar
  34. Rupprecht, H., and T. Gu. 1991. Structure of adsorption layers of ionic surfactants at the solid/liquid interface. Colloid Polym. Sci. 269: 506–522.CrossRefGoogle Scholar
  35. Siffert, B., and P. Espinasse. 1980. Adsorption of organic diacids and sodium polyacrylate onto montmorillonite. Clays & Clay Miner. 28: 381–387.CrossRefGoogle Scholar
  36. Stache, H. (ed.) 1981. Tensidtaschenbuch, 2nd edition. Wien: Carl Hanser Verlag München.Google Scholar
  37. Weiss, A., and R. Frank. 1969. Über den Bau der Gerüste in thixotropen Gelen. Z. Naturforsch. 16b: 141–142.Google Scholar
  38. Weiss, A. 1962. Neuere Untersuchungen über die Struktur thixotroper Gele. Rheologica Acta 2: 292–304.CrossRefGoogle Scholar
  39. Welzen, J. T. A. M., H. N. Stein, J. M. Stevels, and C. A. M. Siskens. 1981. The influence of surface-active agents on kaolinite. J. Colloid Interface Sci. 81: 455–467.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1995

Authors and Affiliations

  • Thorsten Permien
    • 1
  • Gerhard Lagaly
    • 1
  1. 1.Institute of Inorganic ChemistryKiel UniversityKielGermany

Personalised recommendations