Advertisement

Clays and Clay Minerals

, Volume 43, Issue 2, pp 223–228 | Cite as

Thermal Behavior and Decomposition of Intercalated Kaolinite

  • Magda Gábor
  • Mária Tóth
  • János Kristóf
  • Gábor Komáromi-Hiller
Article

Abstract

Intercalation complexes of a Hungarian kaolinite were prepared with hydrazine and potassium acetate. The thermal behavior and decomposition of the kaolinite-potassium acetate complex was studied by simultaneous TA-EGA, XRD, and FTIR methods. The intercalation complex is stable up to 300°C, and decomposition takes place in two stages after melting of potassium acetate intercalated in the interlayer spaces. Dehydroxylation occurred, in the presence of a molten phase, at a lower temperature than for the pure kaolinite. FTIR studies revealed that there is a sequence of dehydroxylation for the various OH groups of intercalated kaolinite. The reaction mechanism was followed up to 1000°C via identification of the gaseous and solid decomposition products formed: H2O, CO2, CO, C3H6O, intercalated phases with basal spacings of 14.1 Å, 11.5 Å, and 8.5 Å as well as elemental carbon, K4H2(CO3)3 · 1.5H2O, K2CO3 · 1.5H2O, and KAlSiO4.

Key Words

Infrared spectroscopy Intercalation Kaolinite Thermal Analysis X-ray powder diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deeds, C. T., H. J. van Olphen, and W. F. Bradley. 1966. Intercalation and interlayer hydration of minerals of the kaolinite group: Proc. Int. Clay Conf., Jerusalem 2: 183–198.Google Scholar
  2. Douglas, M. C., Mac Ewan, and M. J. Wilson. 1980. Crystal Structure of Clay Minerals and Their X-ray Identification, Mineralogical Society, London, 241–242.Google Scholar
  3. Fenoll Hach-Ali, P., and A. Weiss. 1969. Estudio de la reaction de caolinita y N-metil formamida. Annales de la Real Sodièdad Espanola da Fisica y Quimica LXV, 769–790.Google Scholar
  4. Fernandez-Gonzales, M., A. Weiss, and G. Lagaly. 1976. Über das verhalten nordwestspanischer Kaoline bei der Bildung von Einlogerungsverbindungen. Keram. Z. 28: 55–58Google Scholar
  5. Gál, S. 1967. Die Methodik der Wasserdampf-Sorptionsmessungen. Berlin: Springer Verlag.CrossRefGoogle Scholar
  6. Gábor, M., L. Pöppl, V. Izvekov, and H. Beyer. 1989. Interaction of kaolinite with organic and inorganic alkali metal salts at 25-1300°C. Thermochim. Acta 148: 431–438.CrossRefGoogle Scholar
  7. Jackson, M. L., and F. H. Abdel-Kader. 1978. Kaolinite intercalation procedure for all sizes and types with XRD spacing distinctive from other phyllosilicates. Clays & Clay Miner. 26: 81–87.CrossRefGoogle Scholar
  8. Juhász, Z. 1982. Adaption of thermal analysis for the study of water vapour adsorption isotherms. J. Thermal Anal. 25: 409–422.CrossRefGoogle Scholar
  9. Keller, W. D., and R. P. Haenni. 1978. Effects of microsized mixtures of kaolin minerals on properties of kaolinites. Clays & Clay Miner. 26: 384–396.CrossRefGoogle Scholar
  10. Kristóf, J., J. Inczédy, J. Paulik, and F. Paulik. 1991. Continuous and selective determination of water vapour evolved during thermal decomposition reactions. J. Thermal Anal. 37: 111–120.CrossRefGoogle Scholar
  11. Kristóf, J. and J. Inczédy. 1993. Continuous determination of carbon dioxide evolved during thermal decomposition reactions. J. Thermal Anal. 40: 993–998.CrossRefGoogle Scholar
  12. Kristôf, J., J. Inczédy, and G. Mohácsi, G. 1990. Continuous determination of carbon monoxide evolved during thermal decomposition reactions. J. Thermal Anal. 36: 1401–1409.CrossRefGoogle Scholar
  13. Lagaly, G. 1984. Clay organic interactions. Phil. Trans. R. Soc. Lond. A 311: 315–332.CrossRefGoogle Scholar
  14. Ledoux, R. L., and J. L. White. 1964. Infrared study of the OH groups in expanded kaolinite. Science 143: 244–246.CrossRefGoogle Scholar
  15. Range, K. J., A. Range, and A. Weiss. 1969. Fire clay type kaolinite or fire clay mineral? Experimental classification of kaolinite-halloysite minerals. Proc. Int. Clay Conf, Tokyo, 1969, 1, Jerusalem: Israel University Press, 3–13.Google Scholar
  16. Theng, B. K. G., G. I. Churchman, I. S. Whitton, and G. G. C. Claridge. 1984. Comparison of intercalation methods for differentiating halloysite from kaolinite. Clays & Clay Miner. 32: 249–258.CrossRefGoogle Scholar
  17. Thompson, J. G. 1985. Interpretation of solid state l3C and 29Si nuclear magnetic resonance spectra of kaolinite intercalates. Clays & Clay Miner. 33: 173–180.CrossRefGoogle Scholar
  18. van Olphen, H. 1963. An Introduction to Clay Colloid Chemistry, 2nd ed. New York: John Wiley & Sons, 316 pp.Google Scholar
  19. Weiss, A., W. Thielepape, R. Göring, W. Ritter, and H. Schafer. 1963a. Kaolinit-Einlagerungs-Verbindungen. Proc. Int. Clay Conf. Stockholm, 1, Th. Rosenqvist and P. Graff-Peterson, eds. Oxford: Pergamon Press, 287–305.Google Scholar
  20. Weiss, A., W. Thielepape, and H. Orth. 1966. Intercalation into kaolinite minerals. Proc. Int. Clay Conf. Jerusalem I, Jerusalem: Israel University Press, 277–293.Google Scholar
  21. Weiss, A., W. Thielepape, W. Ritter, H. Schafer, and G. Göring. 1963b. Zur Kenntnis von Hydrazin-Kaolinit. Z. Anorg. Allg. Chem. 320: 183–204.CrossRefGoogle Scholar
  22. Wiewiora, A., and G. W. Brindley. 1969. Potassium acetate intercalation in kaolinite and its removal: Effect of material characteristics. Proc. Int. Clay Conf., Tokyo I: 723–733.Google Scholar

Copyright information

© The Clay Minerals Society 1995

Authors and Affiliations

  • Magda Gábor
    • 1
  • Mária Tóth
    • 2
  • János Kristóf
    • 3
  • Gábor Komáromi-Hiller
    • 1
  1. 1.Institute of Inorganic and Analytical ChemistryL. Eötvös UniversityBudapestHungary
  2. 2.Research Laboratory of Geochemistry of the Hungarian Academy of SciencesBudapestHungary
  3. 3.Department of Analytical ChemistryUniversity of VeszprémVeszprémHungary

Personalised recommendations