Advertisement

Clays and Clay Minerals

, Volume 43, Issue 2, pp 212–222 | Cite as

Experimental Study on the Formation of Clay Minerals from Obsidian by Interaction with Acid Solution at 150° and 200°C

  • Motoharu Kawano
  • Katsutoshi Tomita
Article

Abstract

Experimental alteration of obsidian with HCl solution was performed to elucidate dissolution mechanism and formation process of clay minerals in acid solution. Reactions were carried out using 0.1, 0.5, and 4.0 g of obsidian to 100 ml of 0.01 N HCl solution at 150° and 200°C for 1 to 60 days. The reaction products were examined by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive X-ray analysis. The surface composition of obsidian before and after alteration was investigated by X-ray photoelectron spectroscopy (XPS). TEM showed that boehmite precipitated at early stage and spherical kaolinite appeared subsequently by 200°C reactions. However, spherical halloysite occurred predominantly with small amounts of allophane, boehmite, and kaolinite by 150°C reaction in which formation process of the halloysite from allophane passing through an intermediate phase of small size rounded aggregate that consists of fine particles of allophane was observed. A boehmite exhibiting hexagonal platy habit with higher degree of crystallinity was formed by 200°C reaction as a stable phase in solution containing lower Si concentration at which the solution composition coincides with the stability field of boehmite on activity diagram for the system Na2O-Al2O3-SiO2-H2O. The fibrous boehmite having lower crystallinity appeared with increasing Si concentration, considered as a metastable phase in the stability field of kaolinite. XPS indicated that dissolution of obsidian in acid solution proceeded initially by cation exchange between Na ions and hydronium ions in solution and subsequently by preferential release of Al ions relative to Si from the Na depleted surface.

Key Words

Acid solution Allophane Boehmite Experimental alteration Halloysite Obsidian Spherical kaolinite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, B. L., and B. F. Hajek. 1989. Mineral occurrence in soil environments. In Minerals in Soil Environments. J. B. Dixon and S. B. Weed, eds. Wisconsin: Soil Science Society, 199–278.Google Scholar
  2. Brindley, G.W., and W.W. Radoslovich. 1956. X-ray studies of the alteration of soda feldspar. In Proc. Fourth Nat. Conf. Clays Clay Minerals, Vol. 4. Ada Swineford, ed. National Academy of Science: Washington, D.C.Google Scholar
  3. Brown, G. 1980. Associated minerals. In Crystal Structure of Clay Minerals and Their X-ray Identification. G. W. Brindley and G. Brown, eds. London: Mineralogical Society, 361–410.Google Scholar
  4. Busenberg, E. 1978. The products of the interaction of feldspars with aqueous solutions at 25°C. Geochim. Cosmochim. Acta 42: 1679–1686.CrossRefGoogle Scholar
  5. Calvet, É., P. Boivinet, M. Noël, H. Thibon, A. Maillard, and R. Tertian. 1953. Contribution à l’étude des gels d’alumine. Bull. Soc. Chim. Fr. 20: 99–108.Google Scholar
  6. Chou, L., and R. Wollast. 1984. Study of the weathering of albite at room temperature and pressure with a fluidized bed reactor. Geochim. Cosmochim. Acta 48: 2205–2218.CrossRefGoogle Scholar
  7. Christoph, G. G., C. E. Corbató, D. A. Hofmann, and R. T. Tettenhorst. 1979. The crystal structure of boehmite. Clays & Clay Miner. 27: 81–86.CrossRefGoogle Scholar
  8. Dixon, J. B. 1989. Kaolin and serpentine group minerals. In Minerals in Soil Environments. J. B. Dixon and S. B. Weed, eds. Wisconsin: Soil Science Society of America, 467–525.Google Scholar
  9. Farmer, V. C., A. R. Fraser, and J. M. Tait. 1979. Characterization of the chemical structure of natural and synthetic aluminosilicate gels and sols by infrared spectroscopy. Geochim. Cosmochim. Acta 43: 1417–1420.CrossRefGoogle Scholar
  10. Gruner, J. W. 1944. The hydrothermal alteration on feldspars in acid solutions between 300° and 400°C. Econ. Geol. 39: 578–589.CrossRefGoogle Scholar
  11. Hall, P. L., G. J. Churchman, and B. K. G. Theng. 1985. Size distribution of allophane unit particles in aqueous suspensions. Clays & Clay Miner. 33: 345–349.CrossRefGoogle Scholar
  12. Helgeson, H. C., R. M. Garrels, and T. Mackenzie. 1969. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions—II. Applications. Geochim. Cosmochim. Acta 33: 455–481.CrossRefGoogle Scholar
  13. Helgeson, H. C. 1971. Kinetics of mass transfer among silicates and aqueous solutions. Geochim. Cosmochim. Acta 35: 421–469.CrossRefGoogle Scholar
  14. Hinckley, D. N. 1963. Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays & Clay Miner. 11: 229–235.CrossRefGoogle Scholar
  15. Holdren, G. H. Jr., and R. A. Berner. 1979. Mechanism of feldspar weathering—I. Experimental studies. Geochim. Cosmochim. Acta 43: 1161–1171.CrossRefGoogle Scholar
  16. Huang, W. H., and W. D. Keller. 1973. New stability diagrams of some phyllosilicates in the SiO2-Al2O3-K2O-H2O system. Clays & Clay Miner. 21: 331–336.CrossRefGoogle Scholar
  17. Kawano, M., and K. Tomita. 1992. Formation of allophane and beidellite during hydrothermal alteration of volcanic glass below 200°C. Clays & Clay Miner. 40: 666–674.CrossRefGoogle Scholar
  18. Kawano, M., and K. Tomita. 1993. Formation of clay minerals during low temperature hydrothermal alteration of obsidian (Part 1). Effect of addition of Al ions. Nendo Ka-gaku (J. Clay Sci. Soc. Japan) 33: 59–71 (in Japanese).Google Scholar
  19. Kawano, M., K. Tomita, and Y. Kamino. 1993. Formation of clay minerals during low temperature experimental alteration of obsidian. Clays & Clay Miner. 41: 431–441.CrossRefGoogle Scholar
  20. Kittrick, J. A. 1970. Precipitation of kaolinite at 25°C and 1 atm. Clays & Clay Miner. 18: 216–267.CrossRefGoogle Scholar
  21. La Iglesia, A., and E. Galan. 1975. Halloysite-kaolinite transformation at room temperature. Clays & Clay Miner. 23: 109–113.CrossRefGoogle Scholar
  22. La Iglesia, A., J. L. Martin-Vivaldi Jr., and F. Lopez Aguayo. 1976. Kaolinite crystallization at room temperature by homogeneous precipitation—II: Hydrolysis of feldspars. Clays & Clay Miner. 24: 36–42.CrossRefGoogle Scholar
  23. La Iglesia, A., and M. C. Van Oosterwyck-Gastuche. 1978. Kaolinite synthesis. I. Crystallization conditions at low temperatures and calculation of thermodynamic equilibria. Application to laboratory and field observations. Clays & Clay Miner. 26: 397–408.CrossRefGoogle Scholar
  24. Minato, H., and M. Utada. 1969. Mode of occurrence and mineralogy of halloysite. In Proc. Inter. Clay Conf, Tokyo, 1969, Vol. 1. L. Heller, ed. Jerusalem: Israel University Press, 393–402.Google Scholar
  25. Morey, G. W., and W. T. Chen. 1955. The action of hot water on some feldspars. Amer. Mineral. 40: 996–1000.Google Scholar
  26. Morey, G. W., and R. O. Fournier. 1961. The decomposition of microcline, albite and nepheline in hot water. Amer. Mineral. 46: 688–699.Google Scholar
  27. Murray, H. H. 1988. Kaolin minerals: Their genesis of occurrences. In Hydrous Phyllosilicates (Exclusive of Micas). S. W. Bailey, ed. Reviews in Mineralogy, Vol. 19. New York: Mineralogical Society of America, 67–89.CrossRefGoogle Scholar
  28. Nagasawa, K. 1978a. Weathering of volcanic ash and other pyroclastic materials. In Clays & Clay Minerals of Japan. T. Sudo and S. Shimoda, eds. Developments in Sedimentology, 26. Amsterdam: Elsevier, 105–125.CrossRefGoogle Scholar
  29. Nagasawa, K. 1978b. Kaolin minerals. In Clays & Clay Minerals of Japan. T. Sudo and S. Shimoda, eds. Developments in Sedimentology, 26. Amsterdam: Elsevier, 189–219.CrossRefGoogle Scholar
  30. Papée, D., R. Tertian, and R. Biais. 1958. Recherches sur la constitution des gels et des hydrates cristallisés d’alumine. Bull. Soc. Chim. Fr., Mem. Ser. 5: 1301–1310.Google Scholar
  31. Parfitt, R. L., and J. M. Kimble. 1989. Conditions for formation of allophane in soils. Soil Sci. Soc. Am. J. 53: 971–977.CrossRefGoogle Scholar
  32. Parham, W. E. 1969. Formation of halloysite from feldspar Low temperature artificial weathering versus natural weathering. Clays & Clay Miner. 17: 13–22.CrossRefGoogle Scholar
  33. Robbie, R. A., and D. R. Waldbaum. 1968. Thermodynamic properties of minerals and related substances at 298.15°K (25.0°C) and one atmosphere (1.013 bars) pressure and at higher temperatures. U.S. Geol. Sum. Bull. 1259: 256 pp.Google Scholar
  34. Roy, R., and E. F. Osborn. 1954. The system Al2O3-SiO2-H2O. Amer. Mineral. 39: 853–885.Google Scholar
  35. Siefferann, G., and G. Millot. 1969. Equatorial and tropical weathering of Recent basalts from Cameron: Allophane, halloysite, metahalloysite, kaolinite and gibbsite. In Proc. Inter. Clay Conf., Tokyo, 1969, Vol. 1. L. Heller, ed. Jerusalem: Israel University Press, 417–430.Google Scholar
  36. Sudo, T., and H. Takahashi. 1956. Shapes of halloysite particles in Japanese clays. Clays & Clay Miner. 4: 67–79.CrossRefGoogle Scholar
  37. Sudo, T., and H. Takahashi. 1971. The chlorites and inter-stratified minerals. In The Electron-optical Investigation of Clays. J. A. Gard, ed. London: Mineralogical Society, 277–300.Google Scholar
  38. Tamura, T., and M. L. Jackson. 1953. Structural and energy relationships in the formation of iron and aluminium oxides, hydroxides and silicates. Science 117: 381–383.CrossRefGoogle Scholar
  39. Tazaki, K. 1978. Micromorphology of plagioclase surface at incipient stage of weathering. Earth Science (Chikyu Kagaku) 32: 58–62 (in Japanese).Google Scholar
  40. Tazaki, K. 1982. Analytical electron microscopic studies of halloysite formation processes—Morphology and composition of halloysite. In Inter. Clay Conf, 1981. H. van Olphen and F. Veniale, eds. Developments in Sedimentology, 35. Amsterdam: Elsevier, 573–584.Google Scholar
  41. Tchoubar, C. 1965. Formation de la kaolinite à partir d’albite altérée par l’eau à 200°C. Étude en microscopie et diffraction électroniques. Bull. Soc. Franç. Miner. Crist. 88: 483–518.Google Scholar
  42. Tettenhorst, R., and D. A. Hofmann. 1980. Crystal chemistry of boehmite. Clays & Clay Miner. 28: 373–380.CrossRefGoogle Scholar
  43. Thomas, F. B. 1971. The kaolin minerals. In The Electron-optical Investigation of Clays. J. A. Gard, ed. London: Mineralogical Society, 109–157.Google Scholar
  44. ai]Tomura, S., Y. Shibasaki, H. Mizuta, and M. Kitamura. 1983. Spherical kaolinite: Synthesis and mineralogical properties. Clays & Clay Miner. 31: 413–421.CrossRefGoogle Scholar
  45. Tomura, S., Y. Shibasaki, H. Mizuta, and M. Kitamura. 1985. Growth conditions and genesis of spherical and platy kaolinite. Clays & Clay Miner. 33: 200–206.CrossRefGoogle Scholar
  46. Tsuzuki, Y., and K. Suzuki. 1980. Experimental study of the alteration process of labradorite in acid hydrothermal solutions. Geochim. Cosmochim. Acta 44: 673–683.CrossRefGoogle Scholar
  47. Tsuzuki, Y., and I. Kawabe. 1983. Polymorphic transformations of kaolin minerals in aqueous solutions. Geochim. Cosmochim. Acta 47: 59–66.CrossRefGoogle Scholar
  48. van Olphen, H. 1971. Amorphous clay materials. Science 171: 90–91.Google Scholar
  49. Velde, B. 1985. Clay Minerals, A physico-Chemical Explanation of their Occurrence, Developments in Sedimentology, 40: Amsterdam: Elsevier, 427 pp.Google Scholar
  50. Wada, K. 1989. Allophane and imogolite. In Minerals in Soil Environments. J. B. Dixon and S. B. Weed, eds. Wisconsin: Soil Science Society of America, 1051–1087.Google Scholar
  51. Wada, S.-L, A. Eto, and K. Wada. 1979. Synthetic allophane and imogolite. J. Soil Sci. 30: 347–355.CrossRefGoogle Scholar
  52. Wada, S.-L, and K. Wada. 1981. Formation between aluminate ions and orthosilicic acid in dilute alkaline to neutral solutions. Soil Sci. 132: 267–273.CrossRefGoogle Scholar
  53. Watanabe, T., and T. Sudo. 1969. Study on small-angle scattering of some clay minerals. In Proc. Int. Clay Conf, Tokyo, 1969, Vol. 1. L. Heller, ed. Jerusalem: Israel University Press, 173–181.Google Scholar
  54. Wells, N., C. W. Childs, and C. J. Downes. 1977. Silica spring, Tongariro National Park, New Zealand—Analysis of the spring water and characterization of the alumino-silicate deposit. Geochim. Cosmochim. Acta 41: 1498–1506.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1995

Authors and Affiliations

  • Motoharu Kawano
    • 1
  • Katsutoshi Tomita
    • 2
  1. 1.Department of Environmental Sciences and Technology, Faculty of AgricultureKagoshima UniversityKagoshimaJapan
  2. 2.Institute of Earth Sciences, Faculty of ScienceKagoshima UniversityKagoshimaJapan

Personalised recommendations