Advertisement

Clays and Clay Minerals

, Volume 43, Issue 2, pp 191–195 | Cite as

Fourier Transform Raman Spectroscopy of Kaolinite, Dickite and Halloysite

  • Ray L. Frost
Article

Abstract

The vibrational modes of clay minerals are uniquely accessible to FT Raman spectroscopy, but this potentially powerful technique has found limited application to the study of clay mineral structure. Raman spectra in the 50 to 3800 cm−1 region were obtained for a number of kandite clays. The kandite clay minerals are characterised by relatively intense bands centred at 142.7 cm−1 for kaolinite, 143 cm−1 for halloysite and 131.2 cm−1 for dickite with prominent shoulders at 129, 127, and 120 cm−1 respectively. These vibrational modes are attributed to the O-Al-O and O-Si-O symmetric bends. Differences in the lattice modes for the kandite clay minerals in the 200 to 1200 cm−1 were obtained. Four OH bands were obtained for kaolinite 3621, 3652, 3668, and 3695 cm−1; three OH bands were found for a selection of dickites and halloysites. The San Juan Dickite and the Eureka Halloysite show further resolution of the low frequency 3620 cm−1 hydroxyl band. This splitting is attributed to variation in the position of the inner hydroxyls. Variation in band intensity and position was found to be sample dependent.

Key Words

Dickite FT Raman spectroscopy Halloysite Infrared spectroscopy Kandite clay Kaolinite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balachandran, U., and N. G Eror. 1982. Raman spectrum of titanium dioxide. Journal of Solid State Chemistry 42: 276–282.CrossRefGoogle Scholar
  2. Chase, D. B. 1986. Fourier Raman transform spectroscopy. J. Am. Chem. Soc. 108: 7485–7488.CrossRefGoogle Scholar
  3. Cutler, D. J. 1990. Fourier Transform raman instrumentation. Spectrochimica Acta 46A: 131–151.CrossRefGoogle Scholar
  4. Farmer, V. C. 1974. The layer silicates: Ch 15. In Infrared Spectra of Minerals. V. C. Farmer, ed. London: Mineralogical Society, 331–363.CrossRefGoogle Scholar
  5. Frost, R. L., J. R. Bartlett, and P. M. Fredericks. 1993. Fourier transform Raman spectra of kandite clays. Spectrochimica Acta 49A: 667–674.CrossRefGoogle Scholar
  6. Frost, R. L., P. M. Fredericks, B. M. Collins, A. J. Vassallo, and K. A. Finnie. 1994. Infrared emission spectroscopy of clay minerals and their thermal transformations. The Proceedings of the 10th International Clay Conference. R. W. Fitzpatrick, G. J. Churchman, and T. Eggleton, eds. Adelaide, Australia (in press).Google Scholar
  7. Frost, R. L., and A. J. Vassallo. 1994. Dehydroxylation of the kandite and imogolite clay minerals. 14th Australian Clay Minerals Conference, Kalgoorie, Australia.Google Scholar
  8. Ishii, M., T. Shimanouchi, and M. Nakahira. 1967. Far infrared absorption of layer silicates. Inorg. Chim. Acta 1: 387–392.CrossRefGoogle Scholar
  9. Johnston, C. T., G. Sposito, and R. R. Birge. 1985. Raman spectroscopic study of kaolinite in aqueous suspension. Clays & Clay Miner. 33: 483–489.CrossRefGoogle Scholar
  10. Johnston, C. T., S.F. Agnew, and D.L. Bish. 1990. Polarised single crystal Fourier Transform infrared microscopy of Ouray dickite and Keokuk kaolinite. Clays & Clay Miner. 38: 573–583.CrossRefGoogle Scholar
  11. Lazarev, A. N. 1972. Vibrational Spectra and Structure of Silicates. New York: Plenum Press, 123–124.Google Scholar
  12. Ledoux, R. L., and J. L. White. 1964. Infrared study of selective deuteration of kaolinite and halloysite at room temperature. Science 145: 47–49.CrossRefGoogle Scholar
  13. Ohsaka, T., F. Izumu, and Y. Fujiki. 1978. Raman spectrum of anatase, TiO2. J. Raman Spec. 7: 321–324.CrossRefGoogle Scholar
  14. Pajcini, V., and P. Dhamelincourt. 1994. Raman study of OH-stretching vibrations in kaolinite at low temperature. App. Spec. 48: 638–641.CrossRefGoogle Scholar
  15. Prost, R., A. S. Damene, E. Huard, J. Driard, and J. P. Leydecker. 1989. Infrared study of structural OH in kaolinite, dickite and nacrite and poorly crystalline kaolinite at 5 to 600K. Clays & Clay Miner. 37: 464–468.CrossRefGoogle Scholar
  16. Rouxhet, P. G., N. Samudacheata, H. Jacobs, and O. Anton. 1977. Attribution of the OH stretching bands of kaolinite. Clay Miner. 12: 171–178.CrossRefGoogle Scholar
  17. Wada, K. 1967. A study of hydroxyl groups in kaolin minerals utilising selective deuteration and infrared spectroscopy. Clay Miner. 7: 51–61.CrossRefGoogle Scholar
  18. White, J. L., A. Laycock, and M. Cruz. 1970. Infrared studies of proton delocalisation in kaolinite. Bull Groupe Franc. Argiles 22: 157–165.CrossRefGoogle Scholar
  19. Wiewiora, A., T. Wieckowski, and A. Sokolowska. 1979. The Raman spectra of kaolinite subgroup minerals and of pyrophyllite. Arch. Mineral. 135: 5–14.Google Scholar
  20. Vassallo, A. M., P. A. Cole-Clarke, L. S. K. Pang, and A. Palmisano. 1992. Infrared emission spectroscopy of coal minerals and their thermal transformations. J. Appl. Spectrosc. 46: 73–78.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1995

Authors and Affiliations

  • Ray L. Frost
    • 1
  1. 1.Centre for Instrumental and Developmental ChemistryQueensland University of TechnologyQldAustralia

Personalised recommendations