Advertisement

Clays and Clay Minerals

, Volume 43, Issue 2, pp 150–158 | Cite as

Layer Charge of the Expandable Component of Illite/Smectite in K-Bentonite as Determined by Alkylammonium Ion Exchange

  • Kenan Cetin
  • Warren D. Huff
Article

Abstract

—The charge of the expandable interlayers in a series of fourteen diagenetic illite/smectites (I/S) from lower Paleozoic K-bentonites was determined by the alkylammonium ion exchange method. The magnitude (<0.50 equivalents per half formula unit) and characteristic heterogeneous distribution of interlayer charges in eight samples with expandabilities from 70% to about 15% confirm the smectitic character of the expandable interlayers in this range. This result coupled with the lack of a correlation between expandability and interlayer charge is consistent with the hypothesis of a layer-by-layer transformation from a precursor smectite to highly illitic I/S clays during K-bentonite diagenesis. The charge of the expandable interlayers in I/S samples with about 10% or less expandabilities have been inferred to be vermiculitic rather than smectitic. The K-fixed interlayers and expandable interlayers in these samples appear to be similar in charge. The significantly higher charges inferred for the highly illitic samples can be consistent both with a layer-by-layer transformation and the neoformation mechanisms proposed in the literature for the formation of illite.

Key Words

Alkylammonium Bentonite Clays Diagenesis Illite Illite/smectite Layer charge Smectite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altaner, S. P., and C. M. Bethke. 1988. Interlayer order in illite/smectite. Amer. Miner. 73: 766–774.Google Scholar
  2. Bailey, S. W. 1980. Summary of recommendations of AI-PEA Nomenclature Committee. Clays & Clay Miner. 28: 73–78.CrossRefGoogle Scholar
  3. Cetin, K. 1992. The nature of illite/smectite clays smectite illitization in Paleozoic K-bentonites. Ph.D. dissertation. University of Cincinnati, Cincinnati, Ohio, 200 pp.Google Scholar
  4. Ghabru, S.K., A. Mermut. and R. J. S. Arnaud. 1989. Layer charge and cation-exchange characteristics of vermiculite (weathered biotite) isolated from a gray luvisol in northeastern Saskatchewan. Clays & Clay Miner. 37: 164–172.CrossRefGoogle Scholar
  5. Hower, J., W. V. Eslinger, M. Hower, and E. A. Perry. 1976. Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence. Geol. Soc. Amer. Bull. 87: 725–737.CrossRefGoogle Scholar
  6. Lagaly, G. 1979. The layer charge of regular interstratified 2:1 clay minerals. Clays & Clay Miner. 27: 1–10.CrossRefGoogle Scholar
  7. Lagaly, G. 1981. Characterization of clays by organic compounds. Clay Miner. 16: 1–21.CrossRefGoogle Scholar
  8. Lagaly, G. 1982. Layer charge heterogeneity in vermiculites. Clays & Clay Miner. 30: 215–222.CrossRefGoogle Scholar
  9. Lagaly, G., and A. Weiss. 1969. Determination of layer charge in mice-type layer silicates. Proceedings of the International Clay Conference, Tokyo, Japan, L. Heller, ed. 61–80.Google Scholar
  10. Lagaly, G., and A. Weiss. 1976. The layer charge of smectitic layer silicates. Proceedings of the International Clay Conference, Mexico City, Mexico, 1975, 157–172.Google Scholar
  11. Lagaly, G., M. Fernandez Gonzales, and A. Weiss. 1976. Problems in layer charge determination of montmorillonites. Clay Miner. 11: 173–187.CrossRefGoogle Scholar
  12. Laird, D. A., A. D. Scott, and T. E. Fenton. 1987. Interpretation of alkylammonium characterization of soil clays. Journal of Soil Science Society of America 51: 1659–1663.CrossRefGoogle Scholar
  13. Laird, D.A., A.D. Scott, and T.E. Fenton. 1989. Evaluation of the alkylammonium method of determining layer charge. Clays & Clay Miner. 37: 41–46.CrossRefGoogle Scholar
  14. Laird, D. A., and E. A. Nater. 1993. Nature of illitic phase associated with randomly interstratified smectite/illite in soils. Clays & Clay Miner. 41: 280–287.CrossRefGoogle Scholar
  15. MacEwan, D. M. C. 1958. Fourier transform methods for studying scattering form lamellar systems: II. The calculation of x-ray diffraction effects for various types of inter-stratification. Kolloidzeitschrift 156: 61–67.Google Scholar
  16. Mackintosh, E. E., D. G. Lewis, and D. J. Greenland. 1971. Dodecylammonium-mica complexes: I. Factors affecting the cation-exchange reactions. Clays & Clay Miner. 19: 209–218.CrossRefGoogle Scholar
  17. Mackintosh, E. E., D. G. Lewis, and D. J. Greenland. 1972. Dodecylammonium-mica complexes: II. Characterization of the reaction products. Clays & Clay Miner. 20: 125–134.CrossRefGoogle Scholar
  18. Martin, R. T., S. W. Bailey, D. D. Eberl, D. S. Fanning, S. Guggenheim, H. Kodama, D. R. Pevear, J. Srodon, and F. J. Wicks. 1991. Report of the Clay Minerals Society Nomenclature Committee: Revised Classification of Clay Minerals. Clays & Clay Miner. 39: 333–335.CrossRefGoogle Scholar
  19. Moore, D. M., and R. C. Reynolds Jr. 1989. X-ray diffraction and the identification and analysis of clay minerals. Oxford: Oxford University Press, 332 pp.Google Scholar
  20. Nadeau, P. H. 1985. The physical dimensions of fundamental clay particles. Clay Miner. 20: 499–514.CrossRefGoogle Scholar
  21. Nadeau, P. H., J. M. Tait, W. J. McHardy, and M. J. Wilson. 1984. Interstratified XRD characteristics of physical mixtures of elementary clay particles. Clay Miner. 19: 67–76.CrossRefGoogle Scholar
  22. Nadeau, P. H., M. J. Wilson, W. J. MacHardy, and J. M. Tait. 1985. The conversion of smectite to illite during diagenesis: Evidence from some illitic clays from bentonites and sandstones. Mineral. Mag. 49: 93–400.CrossRefGoogle Scholar
  23. Olis, A. C., D. B. Malla, and L. A. Douglas. 1990. The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion. Clay Miner. 25: 39–50.CrossRefGoogle Scholar
  24. Reynolds, R. C. Jr. 1980. Interstratified clay minerals. In Crystal Structure of Clay Minerals and Their X-ray Identification. G. W. Brown and G. Brown, eds. London: Mineralogical Society, 249–303.Google Scholar
  25. Reynolds, R. C. Jr. 1985. NEWMOD: A computer program for the calculation of one-dimensional diffraction patterns of mixed-layer clays. R. C. Reynolds, 8 Brook Rd., Hanover, NH, 24 p.Google Scholar
  26. Reynolds, R. C. Jr., and J. Hower. 1970. The nature of interlayering in mixed-layer illite-montmorillonites. Clays & Clay Miner. 18: 25–36.CrossRefGoogle Scholar
  27. Rühlicke, G., and E. E. Köhler. 1981. A simplified procedure for determining layer charge by the n-alkylammonium method. Clay Miner. 16: 305–307.CrossRefGoogle Scholar
  28. Srodon, J., D. J. Morgan, E. Eslinger, D. D. Eberl, and M. R. Karlinger. 1986. Chemistry of illite/smectite and end-member illite. Clays & Clay Miner. 34: 368–378.CrossRefGoogle Scholar
  29. Vali, H., and H. M. Köster. 1986. Expanding behavior, structural disorder, regular and random interstratification of 2:1 layer silicates studied by high-resolution images of transmission electron microscopy. Clay Miner. 21: 827–859.CrossRefGoogle Scholar
  30. Weaver, C. E., and L. D. Pollard. 1973. The Chemistry of Clay Minerals. Amsterdam: Elsevier, 250 pp.Google Scholar
  31. Weiss, A. 1963. Mica-type layer silicates with mica-type layer silicates. Clays & Clay Miner. 10: 191–224.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1995

Authors and Affiliations

  • Kenan Cetin
    • 1
  • Warren D. Huff
    • 1
  1. 1.Department of GeologyUniversity of CincinnatiCincinnatiUSA

Personalised recommendations