Clays and Clay Minerals

, Volume 42, Issue 5, pp 628–633 | Cite as

The Center Shift in Mössbauer Spectra of Maghemite and Aluminum Maghemites

  • G. M. Da Costa
  • E. De Grave
  • L. H. Bowen
  • R. E. Vandenberghe
  • P. M. A. De Barker


Synthetic, relatively well-crystallized aluminum-substituted maghemite samples, γ-(Aly·Fe1−y)2O3, with y = 0, 0.032, 0.058, 0.084, 0.106 and 0.151 have been studied by X-ray diffraction and zero-field Mössbauer spectroscopy in the range 8 K to 475 K, and also with an external field of 60 kOe at 4.2 K and 275 K. It was found that there are two different converging models for fitting the zero-field spectra of the maghemites with a superposition of two Lorentzian-shaped sextets, both resulting in inconsistent values for the hyperfine fields (Hhf) and/or the center shifts (δ) of the tetrahedral (A) and octahedral (B) ferric ions. From the applied-field measurements it is concluded that there is a constant difference of 0.12 ± 0.01 mm/s between δB and δA, regardless of the Al content. For the Al-free sample the center shifts are found as: δA = 0.370 mm/s and δB = 0.491 mm/s at 4.2 K and δA = 0.233 mm/s and δB = 0.357 mm/s at 275 K (relative to metallic iron), with an estimated error of 0.005 mm/s. Both δA and δB are observed to decrease with increasing Al concentration. The effective hyperfine fields for the non-substituted maghemite sample are: Heff,A = 575 kOe and Heff,B = 471 kOe at 4.2 K and Heff,A = 562 kOe and Heff,B = 449 kOe at 275 K, with an error of 1 kOe. The B-site hyperfine field remains approximately constant with Al substitution, while for the A site a slight decrease with increasing Al content was observed.

Key Words

Al-Maghemite Center shift Maghemite Mössbauer effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Annersten, H. and Hafner, S. S. (1973) Vacancy distribution in synthetic spinels of the series Fe3O4-γ-Fe2O3: Z. Kris-tallog. 137: 321–340.Google Scholar
  2. Armstrong, J. R., Morrish, A. H., and Sawatzky, G. A. (1966) Mössbauer study of ferric ions in the tetrahedral and octahedral sites of a spinel: Phys. Lett. 23: 414–416.CrossRefGoogle Scholar
  3. Bowen, L. H., De Grave, E., and Bryan, A. M. (1994) Mössbauer studies in external field of well crystallized Al-mag-hemites made from hematite: to be published in Hyperfine Interactions.Google Scholar
  4. Bryan, A. M. (1993) The thermal transformation of Al-substituted hematite and lepidocrocite to maghemite studied by “Fe Mössbauer spectroscopy: Ph.D. thesis, North Carolina State University, USA.Google Scholar
  5. Coey, J. M. D., Merup, S., Madsen, M. B., and Knudsen, J. M. (1990) Titanomaghemite in magnetic soils on earth and Mars: J. Geophys. Res.. 95. 14.423–14.425.CrossRefGoogle Scholar
  6. Collyer, S., Grimes, N. W., Vaugham, D. J., and Longworth, G. (1988) Studies of the crystal structure and crystal chemistry of titanomaghemite: Amer. Mineral. 73: 153–160.Google Scholar
  7. de Bakker, P. M. A., De Grave, E., Vandenberghe, R. E., Bowen, L. H., Pollard, R. J., and Persoons, R. M. (1991) Mössbauer study of the thermal decomposition of lepidocrocite and characterisation of the decomposition products: Phys. Chem. Minerals 18: 131–143.CrossRefGoogle Scholar
  8. De Grave, E. and Van Alboom, A. (1991) Evaluation of ferrous and ferric Mössbauer fractions: Phys. Chem. Minerals 18: 337–342.CrossRefGoogle Scholar
  9. De Grave, E., de Bakker, P. M. A., Bowen, L. H., and Vandenberghe, R. E. (1992) Effect of crystallinity and Al substitution on the applied-field Mössbauer spectra of iron oxides and oxyhydroxides: Z. Pflanzenernähr. Bodenk. 155: 467–472.CrossRefGoogle Scholar
  10. De Grave, E., Persoons, R. M., Vandenberghe, R. E., and de Bakker, P. M. A. (1993) Mössbauer study of the high temperature phase of Co-substituted magnetites, Co„Fe3−xO4. I. x ≤ 0.04: Phys. Rev. B 47: 5881–5893.CrossRefGoogle Scholar
  11. de Jesus Filho, M. F., da Nova Mussel, W., Qi, Q., and Coey, J. M. D. (1993) Magnetic properties of aluminum-doped γFe2O3: Proc. 6th Int. Conf. on Ferrites, Toky. 199. (in press).Google Scholar
  12. Ericsson, T., Krisnhamarthy, A., and Srivastava, B. K. (1986) Morin transition in Ti-substituted hematite: A Mössbauer study: Phys. Scripta 33: 88–90.CrossRefGoogle Scholar
  13. Fontes, M. P. F. and Weed, S. B. (1991) Iron oxides in selected Brazilian Oxysols: I. Mineralogy: Soil Sci. Soc. Am. J. 55: 1143–1149.CrossRefGoogle Scholar
  14. Haneda, K. and Morrish, A. H. (1977) Vacancy ordering in γ-Fe2O3 small particles: Solid State Commun. 22: 779–782.CrossRefGoogle Scholar
  15. Haneda, K. and Morrish, A. H. (1993) Structural peculiarities in magnetic small particles: Nuclear Instruments and Methods in Physics Research B76: 132–137.CrossRefGoogle Scholar
  16. Klug, H. P. and Alexander, L. E. (1974) X-ray Diffraction Procedures for Poly cry stalline and Amorphous Materials: John Wiley and Sons, New York.Google Scholar
  17. Mehner, H., Koppe, H.J., and Mörke, W. (1990) Mössbauer investigation of γ-Fe2O3 particles: Hyperfine interactions 54: 609–612.CrossRefGoogle Scholar
  18. Nikumbh, A. H., Aware, A. D., and Sayanekar, P. L. (1992) Electrical and magnetic properties of γ-Fe2O3 synthesized from ferrous tartarate one and half hydrate: J. Magn. Mater. 114: 27–34.CrossRefGoogle Scholar
  19. Pollard, R. J. (1988) On the Mössbauer spectrum of γ-Fe2O3: Hyperfine Interactions 41: 509–512.CrossRefGoogle Scholar
  20. Pollard, R. J. and Morrish, A. H. (1987) High-field magnetism in non-polar γ-Fe2O3 recording particles: IEEE Trans. Magn. MAG(23): 42–44.Google Scholar
  21. Schwertmann, U. and Fechter, H. (1984) The influence of aluminum on iron oxides: XI. Aluminum-substituted maghemite in soils and its formation: Soil Sci. Soc. Am. J. 48: 1462–1463.CrossRefGoogle Scholar
  22. Vandenberghe, R. E. and De Grave, E. (1989) Mössbauer effect studies of oxidic spinels: in Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 3, G. J. Long and F. Grandjean, eds., Plenum, New York, 59–182.CrossRefGoogle Scholar
  23. Wolska, E. and Schwertmann, U. (1989) The vacancy ordering and distribution of aluminium ions in γ-(Fe, Al)2O3: Solid State Ionics 32/33: 214–218.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1994

Authors and Affiliations

  • G. M. Da Costa
    • 1
    • 2
  • E. De Grave
    • 1
  • L. H. Bowen
    • 3
  • R. E. Vandenberghe
    • 1
  • P. M. A. De Barker
    • 1
  1. 1.Laboratory of Magnetism, Department of Subatomic and Radiation PhysicsUniversity of GentGentBelgium
  2. 2.Departamento de QuímicaUniversidade Federal de Ouro Preto OuroPretoBrazil
  3. 3.Department of ChemistryNorth Carolina State UniversityRaleighUSA

Personalised recommendations