Clays and Clay Minerals

, Volume 42, Issue 5, pp 561–566 | Cite as

2H NMR Study of Hydrogen Bonding in Deuterated Kaolinite

  • Shigenobu Hayashi
  • Etsuo Akiba
  • Ritsuro Miyawaki
  • Shinji Tomura


2H NMR spectra of synthetic deuterated kaolinite have been collected in the temperature range from 150 K to 350 K. Hydroxyl groups show a Pake doublet pattern with an asymmetry factor of 0. They are almost fixed spatially, and undergo a wobbling motion with increasing temperature. The quadrupole coupling constant is 273 ± 3 kHz at 150 K, which indicates that interlayer hydrogen bonding is relatively weak.

Key Words

2H NMR Kaolinite Hydrogen bond 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. M. 1983. Hydrogen atom positions in kaolinite by neutron profile refinement. Clays & Clay Miner. 31: 352–356.CrossRefGoogle Scholar
  2. Akiba, E., H. Hayakawa, H. Asano, F. Izumi, R. Miyawaki, S. Tomura, and Y. Shibasaki. 1994. Structure refinement of artificial deuterated kaolinite by Rietveld analysis using Time-of-Flight neutron powder diffraction data. Clays & Clay Miner.: submitted.Google Scholar
  3. Barnes, R. G. 1974. Deuteron quadrupole coupling tensors in solids. Adv. Nucl. Quadrupole Resort. 1: 335–355.Google Scholar
  4. Bish, D. L. 1993. Rietveld refinement of the kaolinite structure at 1.5 K. Clays & Clay Miner. 41: 738–744.CrossRefGoogle Scholar
  5. Bish, D.L., and R.B. Von Dreele. 1989. Rietveld refinement of non-hydrogen atomic positions in kaolinite. Clays & Clay Miner. 37: 289–296.CrossRefGoogle Scholar
  6. Butler, L. G., and T. L. Brown. 1981. Nuclear quadrupole coupling constants and hydrogen bonding. A molecular orbital study of oxygen-17 and deuterium field gradients in formaldehyde-water hydrogen bonding. J. Am. Chem. Soc. 103: 6541–6549.CrossRefGoogle Scholar
  7. Costanzo, P. M., and R. F. Giese, Jr. 1990. Ordered and disordered organic intercalates of 8.4-A, synthetically hy-drated kaolinite. Clays & Clay Miner. 38: 160–170.CrossRefGoogle Scholar
  8. Hayashi, S., K. Hayamizu, S. Mashima, A. Suzuki, P. J. McElheny, S. Yamasaki, and A. Matsuda. 1991. 2D and ’H nuclear magnetic resonance study of deuterated amorphous silicon and partially deuterated hydrogenated amorphous silicon. Jpn. J. Appl Phys. 30A: 1909–1914.CrossRefGoogle Scholar
  9. Hayashi, S., T. Ueda, K. Hayamizu, and E. Akiba. 1992a. NMR study of kaolinite. 1. 29Si, 27Al, and ’H spectra. J. Phys. Chem. 96: 10922–10928.CrossRefGoogle Scholar
  10. Hayashi, S., T. Ueda, K. Hayamizu, and E. Akiba. 1992b. NMR study of kaolinite. 2. ’H, 27Al, and 29Si spin-lattice relaxations. J. Phys. Chem. 96: 10928–10933.CrossRefGoogle Scholar
  11. Miyawaki, R. 1994. Hydrothermal synthesis of kaolinite. J. Clay Sci. Soc. Japan 33: 202–214.Google Scholar
  12. Miyawaki, R., S. Tomura, S. Samejima, M. Okazaki, H. Mizuta, S. Maruyama, and Y. Shibasaki. 1991. Effects of solution chemistry on the hydrothermal synthesis of kaolinite. Clays & Clay Miner. 39: 498–508.CrossRefGoogle Scholar
  13. Olejnik, S., L. A. G. Aylmore, A. M. Posner, and J. P. Quirk. 1968. Infrared spectra of kaolin mineral-dimethyl sulfoxide complexes. J. Phys. Chem. 72: 241–249.CrossRefGoogle Scholar
  14. Olejnik, S., A. M. Posner, and J. P. Quirk. 1970. The intercalation of polar organic compounds into kaolinite. Clay Miner. 8:421–434.CrossRefGoogle Scholar
  15. Sidheswaren, P., A. N. Bhat, and P. Ganguli. 1990. Intercalation of salts of fatty acids into kaolinite. Clays & Clay Miner. 38: 29–32.CrossRefGoogle Scholar
  16. Soda, G., and T. Chiba. 1969. Deuteron magnetic resonance study of cupric sulfate pentahydrate. J. Chem. Phys. 50: 439–455.CrossRefGoogle Scholar
  17. Thompson, J. G., P. J. R. Uwins, A. K. Whittaker, and I. D. R. Mackinnon. 1992. Structural characterization of kaolinite: NaCl intercalate and its derivatives. Clays & Clay Miner. 40: 369–380.CrossRefGoogle Scholar
  18. Tomura, S., Y. Shibasaki, H. Mizuta, and M. Kitamura. 1983. Spherical kaolinite: Synthesis and mineralogical properties. Clays & Clay Miner. 31: 413–421.CrossRefGoogle Scholar
  19. Tomura, S., Y. Shibasaki, H. Mizuta, and M. Kitamura. 1985. Growth conditions and genesis of spherical and Platy kaolinite. Clays & Clay Miner. 33: 200–206.CrossRefGoogle Scholar
  20. Yesinowski, J. P., and H. Eckert. 1987. Hydrogen environments incalsium phosphates. J. Am. Chem. Soc. 109: 6274–6282.CrossRefGoogle Scholar
  21. Young, R. A., and A. W. Hewat. 1988. Verification of the triclinic crystal structure of kaolinite. Clays & Clay Miner. 36: 225–232.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1994

Authors and Affiliations

  • Shigenobu Hayashi
    • 1
    • 2
  • Etsuo Akiba
    • 1
  • Ritsuro Miyawaki
    • 3
  • Shinji Tomura
    • 3
  1. 1.National Institute of Materials and Chemical ResearchTsukuba, IbarakiJapan
  2. 2.Department of ChemistryUniversity of TsukubaTsukuba, IbarakiJapan
  3. 3.National Industrial Research Institute of NagoyaNagoyaJapan

Personalised recommendations