Advertisement

Clays and Clay Minerals

, Volume 42, Issue 5, pp 552–560 | Cite as

Preparation and Characterization of Two Distinct Ethylene Glycol Derivatives of Kaolinite

  • James J. Tunney
  • Christian Detellier
Article

Abstract

A new, well-ordered, thermally robust ethylene glycol intercalate of kaolinite was formed by refluxing the dimethyl sulfoxide intercalate of kaolinite (Kao-DMSO) with dry ethylene glycol (EG). This new phase (Kao-EG 9.4 Å) which is characterized by a d001 of 9.4 Å is distinct from a previously reported ethylene glycol intercalated phase of kaolinite (Kao-EG 10.8 Å) which has a d001 of 10.8 Å. The characterization of these two phases was studied by XRD, NMR, FTIR, and TGA/DSC. It was found that the concentration of water in the ethylene glycol reaction media played a crucial role in governing which of the phases predominated. Water favored Kao-EG 10.8 Å formation, while anhydrous conditions favored the formation of Kao-EG 9.4 Å. It is hypothesized that Kao-EG 9.4 Å is a grafted phase resulting from the product of the condensation reaction between an aluminol group on the interlamenar surface of kaolinite and the alcohol group of ethylene glycol. Ethylene glycol units would be attached to the interlamellar surface of kaolinite via Al-O-C bonds. The Kao-EG 9.4 Å phase was found to be resistant to both thermal decomposition up to 330°C and also, once formed, in the absence of interlamellar water molecules, to decomposition by hydrolysis in refluxing water.

Key Words

Ethylene glycol Interlamellar modification Kaolinite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akitt, J. W., and R. H. Duncan. 1974. Multinuclear study of aluminium isopropoxide. Fourier transform NMR of a quadrupolar nucleus. J. Magn. Resonance 15: 162–165.Google Scholar
  2. Aranda, P., and E. Ruiz-Hitzky. 1992. Poly(ethylene oxide)—Silicate intercalation materials. Chem. Mater. 4: 1395–1403.CrossRefGoogle Scholar
  3. Bailey, S. W. 1984. Structure of layer silicates. In Crystal Structures of Clay Minerals and Their X-ray Identification. G. W. Brindley and G. Brown, eds. London: Mineralogical Society, 1–124.Google Scholar
  4. Boreskov, G. K., M. Yu, K. Shchekochikhin, A. D. Makarov, and V. N. Filimonov. 1964. Investigation of the structure of surface compounds formed in the adsorption of ethanol on the T-oxide of alumina, by the method of infrared adsorption spectra. Dokl. Akad. Nauk. SSSR. [Phys. Chem.] English 156: 564–566.Google Scholar
  5. Camazano, M. S., and S. G. Garcia. 1966. Interlayer complexes of kaolinite and halloysite with polar liquids. An. Edafol Agrobiol. 25: 9–25.Google Scholar
  6. Costanzo, P. M., and R. F. Giese. 1990. Ordered and disordered organic intercalates of 8.4 Å synthetically hydrated kaolinite. Clays & Clay Miner. 38: 160–170.CrossRefGoogle Scholar
  7. Cruz, M., H. Jacobs, and J. J. Fripiat. 1972. The nature of the interlayer bonding in kaolin minerals. In Proc. Int. Clay Conf, Madrid. Madrid: Division de Ciencias, C.S.I.C, 35–46.Google Scholar
  8. Earnest, C. M. 1980. The application of differential thermal analysis and thermogravimetry to the study of kaolinite clay minerals. Perkin-Elmer Thermal Analysis Application Study 30. Norwalk, Conn: Perkin Elmer.Google Scholar
  9. Giese, R. F. 1988. Kaolin minerals: Structures and stabilities. In Hydrous Phyllosilicates. S. W. Bailey, ed. Washington, D.C.: Mineralogical Society of America.Google Scholar
  10. Greenler, R. G. 1962. Infrared study of the adsorption of methanol and ethanol on alumina oxide. J. Chem. Phys. 37: 2094–2100.CrossRefGoogle Scholar
  11. Guertin, D. L., S. E. Wiberley, W. H. Bauer, and J. Goldenson. 1956. The infrared spectra of three aluminum alkoxides. J. Phys. Chem. 60: 1018–1019.CrossRefGoogle Scholar
  12. Herreros, B., T. L. Barr, and J. Klinowski. 1994. Spectroscopic studies of barium aluminate glycolate, Ba[Al2(C2H4O2)4], a 5-coordinate aluminate compound. J. Phys. Chem. 98: 738–741.CrossRefGoogle Scholar
  13. Inoue, M., H. Kominami, and T. Inui. 1991a. Reaction of aluminium alkoxides with various glycols and the layer structure of their products. J. Chem. Soc, Dalton Trans. 3331–3336.Google Scholar
  14. Inoue, M., Y. Kondo, and T. Inui. 1988. An ethylene glycol derivative of boehmite. Inorg. Chem. 27: 215–221.CrossRefGoogle Scholar
  15. Inoue, M., H. Tanino, and Y. Kondo. 1991b. Formation of organic derivatives of boehmite by the reaction of gibbsite with glycols and aminoalcohols. Clays & Clay Miner. 39: 151–157.CrossRefGoogle Scholar
  16. Johnston, C. T., G. Sposito, D. F. Bocian, and R. R. Birge. 1984. Vibrational spectroscopic study of the interlamellar kaolinite-dimethylsulfoxide complexes. J. Phys. Chem. 88: 5959–5964.CrossRefGoogle Scholar
  17. MacEwan, D. M. C., and M. J. Wilson. 1984. Interlayer and intercalation complexes of clay minerals. In Crystal Structures of Clay Minerals and Their X-ray Identification. G. W. Brindley and G. Brown, eds. London: Mineralogical Society, 197–248.Google Scholar
  18. Olejnik, S., A. M. Posner, and J. P. Quirk. 1970. The intercalation of polar organic compounds into kaolinite. Clay Miner. 8: 421–434.CrossRefGoogle Scholar
  19. Ovramenko, N. A., O. F. Zakharchenko, A. S. Litovchenko, V. V. Trachevskii, V. I. Shutova, and F. D. Ovcharenko. 1989. Some characteristics of the structure of kaolinite-(HBO2)n intercalates from nB, 29Si, 27A1, and ’H NMR Data. Dokl. Akad. Nauk. SSSR. [Chem.] English 309: 364–367.Google Scholar
  20. Pérez-Maqueda, L. A., J. L. Pérez-Rodriguez, G. W. Scheiffele, A. Justo, and P. J. Sânchez-Soto. 1993. Thermal analysis of ground kaolinite and pyrophillite. J. Therm. Anal. 39: 1055–1067.Google Scholar
  21. Range, K. J., A. Range, and A. Weiss. 1969. Fire-clay type kaolinite or fire clay mineral? Experimental classification of kaolinite-halloysite minerals. Proc. Int. Clay Confi, Tokyo, 1969. 1. Jerusalem: Israel University Press, 3–13.Google Scholar
  22. Raussell-Colom, J. A., and J. M. Serratosa. 1987. Reactions of clays with organic substances. In Chemistry of Clays and Clay Minerals. A. C. D. Newman, ed. London: Mineralogical Society, 371–422.Google Scholar
  23. Rouxhet, P. G., N. Samudacheata, H. Jacobs, and O. Anton. 1977. Attribution of the OH stretching bands of kaolinite. Clay Miner. 12: 171–179.CrossRefGoogle Scholar
  24. Sugahara, Y., S. Satokawa, K. Kuroda, and C. Kato. 1988. Evidence for the formation of interlayer polyacrylonitrile in kaolinite. Clays & Clay Miner. 36: 343–348.CrossRefGoogle Scholar
  25. Sugahara, Y., S. Satokawa, K. Kuroda, and C. Kato. 1990. Preparation of a kaolinite-polyacrylamide intercalation compound. Clays & Clay Miner. 38: 137–143.CrossRefGoogle Scholar
  26. Theng, B. K. G. 1974. Complexes with the kaolinite group of minerals. In The Chemistry of Clay-Organo Reactions. London: Adam Hilger, 239–260.Google Scholar
  27. Tundo, P., P. Venturello, and E. Angeletti. 1982. Phase-transfer catalysts immobilized and adsorbed on alumina and silica gel. J. Am. Chem. Soc. 104: 6551–6555.CrossRefGoogle Scholar
  28. Tunney, J. J., and C. Detellier. 1993. Interlamellar covalent grafting of organic units on kaolinite. Chem. Mater. 5: 747–748.CrossRefGoogle Scholar
  29. Tunney, J. J., and C. Detellier. 1994. Preparation and characterization of an 8.4 Å hydrate of kaolinite. Clays & Clay Miner. 42: 473–476.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1994

Authors and Affiliations

  • James J. Tunney
    • 1
  • Christian Detellier
    • 1
  1. 1.Ottawa-Carleton Chemistry Institute, Department of ChemistryUniversity of OttawaOttawaCanada

Personalised recommendations