Clays and Clay Minerals

, Volume 41, Issue 6, pp 745–754 | Cite as

Clay Mineralogy and Illite Crystallinity of the Atoka Formation, Arkoma Basin, and Frontal Ouachita Mountains

  • Christoph Spötl
  • David W. Houseknecht
  • Robert Jaques


Clay mineralogy (including illite crystallinity) was studied in Pennsylvanian synorogenic sediments (Atoka Formation) in the subsurface of the Arkoma Basin and the adjacent Ouachita thrust belt. Vitrinite reflectance values range from ≥0.8% at the surface up to as high as 4.7% Ro at the base of the Atoka Formation. The mineralogy of the <2 µm fraction of the mudrocks is fairly monotonous and composed of illite (<10% interstratified smectite), Fe-chlorite, kaolinite, quartz, and traces of feldspars. Kaolinite is common at shallow levels and “disappears” in most wells at a thermal maturity of 1.9–2.1% Ro, suggesting its possible use as an independent paleothermal indicator in this basin. Illite crystallinity (IC) values are fairly high (0.3–0.5° 2θ) and show little variation throughout the entire maturity range. In addition, no relation was observed between vitrinite reflectance and illite crystallinity, indicating that IC is not a useful paleothermal indicator in these rocks. Illite is almost exclusively of the 2M1 polytype, suggesting a predominantly detrital origin. Incipient metamorphic and low-grade metamorphic mudrocks in the Ouachita thrust belt to the east of the Arkoma Basin are regarded as the source rocks for the clays of the Atoka Formation. Rapid transportation and deposition by turbidity currents probably played a key role in protecting these unweathered micas from pervasive alteration in the terrestrial environment.

Key Words

Anchimetamorphism Diagenesis Illite Illite crystallinity Polytype Provenance Vitrinite reflectance X-ray powder diffraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arne, D. C. (1992) Evidence from apatite fission-track analysis for regional Cretaceous cooling in the Ouachita mountain fold belt and Arkoma Basin of Arkansas: Amer. Ass. Petrol. Geol. Bull. 76, 392–402.Google Scholar
  2. Bailey, S. W. (1984) Structures of layer silicates: in Crystal Structures of Clay Minerals and Their X-Ray Identification, Vol. 5, G. W. Brindley and G. Brown, eds., Mineralogical Society Monograph Mineralogical Society, London, 1–124.Google Scholar
  3. Barker, C. E. and Goldstein, R. H. (1990) Fluid-inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer: Geology 18, 1003–1006.CrossRefGoogle Scholar
  4. Blenkinsop, T. G. (1988) Definition of low-grade metamorphic zones using illite crystallinity: J. Metamorphic Geol. 6, 623–636.CrossRefGoogle Scholar
  5. Deming, D., Nunn, J. A., Jones, S., and Chapman, D. S. (1990) Some problems in thermal history studies: in Applications of Thermal Maturity Studies to Energy Exploration, V. F. Nuccio and C. E. Barker, eds., SEPM Rocky Mountain Section, Denver, 61–80.Google Scholar
  6. Denison, R. E. (1982) Ages of Ouachita metamorphism: Geol. Soc. Amer. Annual Meeting, Abstract with Program 14, p. 475.Google Scholar
  7. Denison, R. E., Burke, W. H., Otto, J. B., and Hetherington, E. A. (1977) Age of igneous and metamorphic activity affecting the Ouachita foldbelt; in Symposium on the Geology of the Quachita Mountains, Vol. I, C. G. Stone, ed., Arkansas Geol. Comm., Little Rock, 25–10.Google Scholar
  8. Desborough, G. A., Zimmermann, R. A., Elrick, M., and Stone, C. (1985) Early Permian thermal alteration of Carboniferous strata in the Ouachita region and Arkansas river valley, Arkansas: Geol. Soc. Amer. Annual Meeting, Abstr. with Progr. 19, p. 155.Google Scholar
  9. Dorsey, R. J., Buchovecky, E. J., and Lundberg, N. (1988) Clay mineralogy of Pliocene-Pleistocene mudstones, eastern Taiwan: Combined effects of burial diagenesis and provenance unroofing: Geology 16, 944–947.CrossRefGoogle Scholar
  10. Drever, J. I. (1973) The preparation of oriented clay mineral specimens for X-ray diffraction analysis by a filter-membrane peel technique: Amer. Mineral. 58, 553–554.Google Scholar
  11. Frey, M. (1987) Very low-grade metamorphism of clastic sedimentary rocks: in Low Temperature Metamorphism, M. Frey, ed., Blackie, Glasgow, 13–58.Google Scholar
  12. Frey, M. (1988) Discontinuous inverse metamorphic zo-nation, Glarus Alps, Switzerland: Evidence from illite “crystallinity” data: Schweiz. Mineral. Petrogr. Mitt. 70, 171–183.Google Scholar
  13. Ge, S. and Garven, G. (1992) Hydromechanical modeling of tectonically driven groundwater flow with application to the Arkoma foreland basin: J. Geophys. Res. 97/B6, 9119–9144.CrossRefGoogle Scholar
  14. Graham, S. A., Ingersoll, R. V., and Dickinson, W. R. (1976) Common provenance for lithic grains in Carboniferous sandstones from Ouachita Mountains and Black Warrior basin: J. Sed. Petrol. 46, 620–623.Google Scholar
  15. Guthrie, J. M., Houseknecht, D. W., and Johns, W. D. (1986) Relationship among vitrinite reflectance, illite crystallinity, and organic geochemistry in Carboniferous strata, Ouachita Mountains, Oklahoma and Arkansas: Amer. Ass. Petrol. Geol. Bull. 70, 26–33.Google Scholar
  16. Héroux, Y., Chagnon, A., and Bertrand, R. (1979) Compilation of correlation of major thermal maturity indicators: Amer. Ass. Petrol. Geol. Bull. 63, 2128–2144.Google Scholar
  17. Houseknecht, D. W. (1986) Evolution from passive margin to foreland basin: The Atoka Formation of the Arkoma basin, south-central U.S.A.: Spec. Publ. Int. Ass. Sedim. 8, 327–345.Google Scholar
  18. Houseknecht, D. W. (1987) The Atoka Formation of the Arkoma Basin: Tectonics, Sedimentology, Thermal Maturity, Sandstone Petrology: Tulsa Geol. Soc. Short Course Notes, 1987, 72 pp.Google Scholar
  19. Houseknecht, D. W., Hathon, L. A., and McGilvery, T. A. (1992) Thermal maturity of Paleozoic strata in the Arkoma basin; in Source Rocks in the Southern Midcontinent, 1990 Symposium, Vol. 93, K. S. Johnson and B. J. Cardott, eds., Oklahoma Geol. Survey Circ. 122–132.Google Scholar
  20. Houseknecht, D. W., Bensley, D. F., Hathon, L. A., and Kastens, P. H. (1993) Rotational reflectance properties of Arkoma basins dispersed vitrinite: Insights for understanding reflectance populations in high thermal maturity regions: Org. Geochem. 20, 187–196.CrossRefGoogle Scholar
  21. Houseknecht, D. W. and Ross, L. M. (1992) Clay minerals in Atokan deep-water sandstone facies, Arkoma basin: Origins and influence on diagenesis and reservoir quality: in Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones, Vol. 47, D. W. Houseknecht and E. D. Pittman, eds., SEPM Spec. Publ. 227–240.Google Scholar
  22. Houseknecht, D. W. and Spötl, C. (1993) Empirical observations regarding methane “deadlines” in deep basins and thrust belts: U.S. Geol. Survey Prof. Paper (in press).Google Scholar
  23. Hunziker, J. C., Frey, M., Clauer, N., Dallmeyer, R. D., Fried-richsen, H., Flehmig, W., and Hochstrasser, K. (1986) The evolution of illite to muscovite: Mineralogical and isotopic data from the Glarus Alps, Switzerland: Contrib. Mineral. Petrol. 92, 157–180.CrossRefGoogle Scholar
  24. Kisch, H. J. (1983) Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks: in Diagenesis of Sediments and Sedimentary Rocks, Vol. 25B, G. Larsen and G. V. Chilingar, eds., Developments in Sedimentology, 289–493.Google Scholar
  25. Kisch, H. J. (1987) Correlation between indicators of very low-grade metamorphism: in Low Temperature Metamorphism, M. Frey, ed., Blackie, Glasgow, 227–300.Google Scholar
  26. Kisch, H. J. (1990) Calibration of the anchizone: A critical comparison of illite “crystallinity” scales used for definition: J. Metamorphic Geol. 8, 31–46.CrossRefGoogle Scholar
  27. Kisch, H.J. (1991) Illite crystallinity: Recommendations on sample preparation, x-ray diffraction settings, and interla-boratory samples: J. Metamorphic Geol. 9, 665–670.CrossRefGoogle Scholar
  28. Kisch, H. J. and Frey, M. (1987) Effect of sample preparation on the measured 10Å peak width of illite (illite “crystallinity”), in Low Temperature Metamorphism, M. Frey, ed., Blackie, Glasgow, 301–304.Google Scholar
  29. Kübler, B. (1966) La cristallinité de l’illite et les zones tout a fait supérieures du métamorphisme, in Collegue sur les Étages Tectoniques, J. P. Schaer, éd., Neuchâtel, 105–122.Google Scholar
  30. Kübler, B. (1990) “Cristallinité” de l’illite et mixed-layers: Brève révision: Schweiz. Minerai. Petrogr. Mitt. 70, 89–93.Google Scholar
  31. Landis, C. A. (1971) Graphitization of dispersed carbonaceous material in metamorphic rocks: Contrib. Mineral. Petrol. 30, 34–45.CrossRefGoogle Scholar
  32. Lanson, B. and Champion, D. (1991) The I/S-to-illite reaction in the late stage diagenesis: Am. J. Sci. 291, 473–506.CrossRefGoogle Scholar
  33. Leach, D. L. and Rowan, E. L. (1986) Genetic link between Ouachita foldbelt tectonism and the Mississippi Valley-type lead zinc deposits of the Ozarks: Geology 14, 931–935.CrossRefGoogle Scholar
  34. Mack, G. H., Thomas, W. A., and Horsey, C. A. (1983) Composition of Carboniferous sandstones and tectonic framework of southern Appalachian-Ouachita orogen: J. Sed. Petrol. 53, 931–946.Google Scholar
  35. Maxwell, D. T. and Hower, J. (1967) High-grade diagenesis and low-grade metamorphism of illite in the Precambrian belt series: Amer. Mineral. 52, 843–857.Google Scholar
  36. Monnier, F. (1982) Thermal diagenesis in the Swiss molasse basin: Implications for oil generation: Can. J. Earth Sci. 19, 328–342.CrossRefGoogle Scholar
  37. Moore, D. M. and Reynolds, R. C. (1989) X-Ray Diffraction and the Identification and A nalysis of Clay Minerals: Oxford Univ. Press, Oxford, 332 p.Google Scholar
  38. Morris, R. C. (1989) Stratigraphy and sedimentary history of post-Arkansas Novaculite Carboniferous rocks of the Ouachita Mountains: in The Appalachian-Ouachita Orogen in the United States, Vol. F-2, R. D. Hatcher, W. A. Thomas, and G. W. Viele, eds., The Geology of North America, Geol. Soc. Amer., Boulder, 591–602.Google Scholar
  39. Mukhamet-Galeyev, A. P., Pokrovskiy, V. A., Zotov, A. V., Ivanov, I. P., and Samotoin, N. D. (1985) Kinetics and mechanism of hydrothermal crystallization of 2M1 muscovite: An experimental study: Intern. Geol. Rev. 27, 1352–1364.CrossRefGoogle Scholar
  40. Naeser, N. D. and Mcculloh, T. H. (1989) Thermal History of Sedimentary Basins. Methods and Case Histories: Springer, New York, 319 pp.CrossRefGoogle Scholar
  41. Nicholas, R. L. and Waddell, D. E. (1989) The Ouachita system in the subsurface of Texas, Arkansas, and Louisiana: in The Appalachian-Ouachita Orogen in the United States, Vol. F-2, R. D. Hatcher, W. A. Thomas, and G. W. Viele, eds., The Geology of North America, Geol. Soc. Amer., Boulder, 661–672.Google Scholar
  42. Ogunyomi, O., Hesse, R., and Herouz, Y. (1980) Pre-orogenic and synorogenic diagenesis and anchimetamorphism in lower Paleozoic continental margin sequences of the northern Appalachians in and around Quebec City, Canada: Bull. Canad. Petrol. Geol. 28, 559–577.Google Scholar
  43. Pollastro, R. M. (1993) Considerations and applications of illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age: Clays & Clay Minerals 41, 119–133.CrossRefGoogle Scholar
  44. Reynolds, R. C. (1985) NEWMOD©. A Computer Program for the Calculation of One-Dimensional Diffraction Patterns of Mixed-Layered Clays: R. C. Reynolds Jr., Hanover, New Hampshire.Google Scholar
  45. Robert, P. (1988) Organic Metamorphism and Geothermal History: Elf-Aquitaine and D. Reidel Publ. Comp., Dordrecht, 311 pp.Google Scholar
  46. Robinson, D., Warr, L. N., and Bevins, R. E. (1990) The illite “crystallinity” technique: A critical appraisal of its precision: J. Metamorphic Geol. 8, 333–344.CrossRefGoogle Scholar
  47. Sutherland, P. K. (1988) Late Mississippian and Pennsyl-vanian depositional history in the Arkoma basin area, Oklahoma and Arkansas: Geol. Soc. Amer. Bull. 100, 1787–1802.CrossRefGoogle Scholar
  48. Teichmüller, M., Teichmüller, R., and Weber, K. (1979) Inkohlung und Illit-Kristallinität. Vergleichende Untersuchungen im Mesozoikrum und Paläozoikum von Westfalen: Fortschritte Geol. Rheinland Westfalen 27, 201–276.Google Scholar
  49. Thomas, W. A. (1989) The Appalachian-Ouachita orogen beneath the Gulf coastal plain between the outcrops in the Appalachians and Ouachita Mountains: in The Appala-chian-Ouachita Orogen in the United States, Vol. F-2, R. D. Hatcher, W. A. Thomas, and G. W. Viele, eds., The Geology of North America, Geol. Soc. Amer., Boulder, 537–553.Google Scholar
  50. Viele, G. W. and Thomas, W. A. (1989) Tectonic synthesis of the Ouachita orogenic belt: in The Appalachian-Ouachita Orogen in the United States, Vol. F-2, R. D. Hatcher, W. A. Thomas, and G. W. Viele, eds., The Geology of North America, Geol. Soc. Amer., Boulder, 695–728.Google Scholar
  51. Waples, D. W., Suizu, M., and Kamata, H. (1992) The art of maturity modeling. Part 2: Alternative models and sensitivity analysis: Amer. Ass. Petrol. Geol. Bull. 76, 47–66.Google Scholar
  52. Weaver, C. E. (1960) Possible uses of clay minerals in search for oil: Amer. Ass. Petrol. Geol. Bull. 44, 1505–1518.Google Scholar
  53. Weaver, C. E. (1961) Clay minerals of the Ouachita structural belt and adjacent foreland: in The Ouachita System, Vol. 6120, P. T. Flawn, A. Goldstein, P. B. King, and C. E. Weaver, eds., Univ. of Texas Bureau of Econ. Geology Publications, 147–162.Google Scholar
  54. Wilcoxon, B. R., Ferrell, R. E., Sassen, R., and Wade, W. J. (1990) Illite polytype distribution as an inorganic indicator of thermal maturity in the Smackover Formation of the Manila Embayment, southwest Alabama: Org. Geochem. 15, 1–8.CrossRefGoogle Scholar
  55. Yang, C. and Hesse, R. (1991) Clay minerals as indicators of diagenetic and anchimetamorphic grade in an overthrust belt, external domain of southern Canadian Appalachians: Clay Minerals 26, 211–231.CrossRefGoogle Scholar
  56. Zachry, D. L. (1983) Sedimentologic framework of the Atoka Formation, Arkoma basin, Arkansas: in Tectonic-Sedimentary Evolution of the Arkoma Basin, Vol. 1, D. W. Houseknecht, ed., SEPM Midcontinent Section, 34–52.Google Scholar

Copyright information

© The Clay Minerals Society 1993

Authors and Affiliations

  • Christoph Spötl
    • 1
  • David W. Houseknecht
    • 1
  • Robert Jaques
    • 1
  1. 1.Department of Geological SciencesUniversity of MissouriColumbiaUSA

Personalised recommendations