Advertisement

Clays and Clay Minerals

, Volume 41, Issue 6, pp 738–744 | Cite as

Rietveld Refinement of the Kaolinite Structure at 1.5 K

  • David L. Bish
Article

Abstract

The crystal structure of Keokuk kaolinite, including all H atoms, was refined in space group C1 using low-temperature (1.5 K) neutron powder diffraction data (λ = 1.9102 Å) and Rietveld refinement/difference-Fourier methods to Rwp = 1.78%, reduced χ2 = 3.32. Unit-cell parameters are: a = 5.1535(3) Å, b = 8.9419(5) Å, c = 7.3906(4) Å, α = 91.926(2)°, β = 105.046(2)°, γ = 89.797(2)°, and V = 328.70(5) Å3. Unit-cell parameters show that most of the thermal contraction occurred along the [001] direction, apparently due to a decrease in the interlayer distance. The non-H structure is very similar to published C1 structures, considering the low temperature of data collection, but the H atom positions are distinct. The inner OH group is essentially in the plane of the layers, and the inner-surface OH groups make angles of 60°–73° with the (001) plane. Difference-Fourier maps show minor anisotropy of the inner-OH group in the [001] direction, but the inner-surface OH groups appear to have their largest vibrational (or positional disorder) component parallel to the layers. Although no data indicate a split position of any of the H sites in kaolinite, there is support for limited random positional disorder of the H atoms. However, these data provided no support for a space group symmetry lower than C1.

Key Words

Crystal structure H positions Kaolinite Low temperature Neutron powder diffraction Rietveld refinement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, R. N., Jr. (1989) Kaolinite: Energy calculations bearing on the location of the inner hydrogen atoms: in Abstracts with Program, 1989 Annual Meeting of the Geological Society of America, St. Louis, Missouri, p. A43 (abstract).Google Scholar
  2. Adams, J. M. (1983) Hydrogen atom positions in kaolinite by neutron profile refinement: Clays & Clay Minerals 31, 352–356.CrossRefGoogle Scholar
  3. Baur, W. H. and Tillmanns, E. (1986) How to avoid unnecessarily low symmetry in crystal structure determinations: Acta Crystallogr. B42, 95–111.CrossRefGoogle Scholar
  4. Bish, D. L. and Johnston, C. T. (1993) Rietveld refinement and Fourier-transform infrared spectroscopic study of the dickite structure at low temperature: Clays & Clay Minerals 41, 297–304.CrossRefGoogle Scholar
  5. Bish, D. L. and Von Dreele, R. B. (1989) Rietveld refinement of non-hydrogen atomic positions in kaolinite: Clays & Clay Minerals 37, 289–296.CrossRefGoogle Scholar
  6. Bookin, A. S., Drits, V. A., Plançon, A., and Tchoubar, C. (1989) Stacking faults in kaolin-group minerals in the light of real structural features: Clays & Clay Minerals 37, 297–307.CrossRefGoogle Scholar
  7. Brindley, G. W., Kao, C.-C., Harrison, J. L., Lipsicas, M., and Raythatha, R. (1986) Relation between structural disorder and other characteristics of kaolinites and dickites: Clays & Clay Minerals 34, 239–249.CrossRefGoogle Scholar
  8. Brindley, G. W. and Robinson, K. (1946) The structure of kaolinite: Mineral. Mag. 27, 242–253.Google Scholar
  9. Dollase, W. A. (1986) Correction of intensities for preferred orientation in powder diffractometry: Application of the March model: J. Appl. Crystallogr. 19, 267–272.CrossRefGoogle Scholar
  10. Giese Jr., R. F. and Datta, P. (1973) Hydroxyl orientation in kaolinite, dickite, and nacrite: Amer. Mineral. 58, 471–479.Google Scholar
  11. Giese Jr., R. F. (1982) Theoretical studies of the kaolin minerals: Electrostatic calculations: Bull. Mineral. 105, 417–424.Google Scholar
  12. Guthrie, G. D. and Bish, D. L. (1991) Ionic modeling of the hydrogen sites in the kaolin polymorphs: in Program and Abstracts, 28th Annual Meeting of the Clay Minerals Society, Houston, Texas, p. 63 (abstract).Google Scholar
  13. Hess, A. C. and Saunders, V. R. (1992) Periodic ab initio Hartree-Fock calculations of the low-symmetry mineral kaolinite: J. Phys. Chem. 96, 4367–4374.CrossRefGoogle Scholar
  14. Johnston, C. T., Agnew, S. F., and Bish, D. L. (1990) Polarized single-crystal Fourier-transform infrared microscopy of Ouray dickite and Keokuk kaolinite: Clays & Clay Minerals 38, 573–583.CrossRefGoogle Scholar
  15. Joswig, W. and Drits, V. A. (1986) The orientation of the hydroxyl groups in dickite by X-ray diffraction: N. Jb. Miner. Mh. 19–22.Google Scholar
  16. Larson, A. C. and Von Dreele, R. B. (1988) Generalized structure analysis system: Los Alamos National Laboratory Rept. LAUR 86–748, 150 pp.Google Scholar
  17. Pauling, L. (1930) The structure of the chlorites: Proc. Natl. Acad. Sci. U.S.A. 16, 578–582.CrossRefGoogle Scholar
  18. Plancon, A., Giese, R. F., Jr., Snyder, R., Drits, V. A., and Bookin, A. S. (1989) Stacking faults in the kaolin-group minerals: Defect structures of kaolinite: Clays & Clay Minerals 37, 203–210.CrossRefGoogle Scholar
  19. Prost, R., Dameme, A., Huard, E., Driard, J., and Leydecker, J. P. (1989) Infrared study of structural OH in kaolinite, dickite, nacrite, and poorly crystalline kaolinite at 5 to 600 K: Clays & Clay Minerals 37, 464–468.CrossRefGoogle Scholar
  20. Smith, D. K., Nichols, M. C., and Zolensky, M. E. (1983) POWD10, A FORTRAN IV program for calculating X-ray powder diffraction patterns: The Pennsylvania State University, University Park, Pennsylvania.Google Scholar
  21. Suitch, P. R. and Young, R. A. (1983) Atom positions in highly ordered kaolinite: Clays & Clay Minerals 31, 357–366.CrossRefGoogle Scholar
  22. Thompson, J. G., Fitz Gerald, J. D., and Withers, R. L. (1989) Electron diffraction evidence for C-centering of non-hydrogen atoms in kaolinite: Clays & Clay Minerals 37, 563–565.CrossRefGoogle Scholar
  23. Thompson, J. G. and Withers, R. L. (1987) A transmission electron microscopy contribution to the structure of kaolinite: Clays & Clay Minerals 35, 237–239.CrossRefGoogle Scholar
  24. Von Dreele, R. B., Jorgensen, J. D., and Windsor, C. G. (1982) Rietveld refinement with spallation neutron powder diffraction data: J. Appl. Crystallogr. 15, 581–589.CrossRefGoogle Scholar
  25. Young, R. A. (1988) Pressing the limits of Rietveld refinement: Aust. J. Phys. 41, 297–310.CrossRefGoogle Scholar
  26. Young, R. A. and Hewat, A. W. (1988) Verification of the triclinic crystal structure of kaolinite: Clays & Clay Minerals 36, 225–232.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1993

Authors and Affiliations

  • David L. Bish
    • 1
  1. 1.Earth and Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosMexico

Personalised recommendations