Advertisement

Clays and Clay Minerals

, Volume 41, Issue 6, pp 731–737 | Cite as

Synthesis and CO2 Adsorption Features of a Hydrotalcite-Like Compound of the Mg2+-Al3+-Fe(CN)64- System with High Layer-Charge Density

  • Gang Mao
  • Masamichi Tsuji
  • Yutaka Tamaura
Article

Abstract

Hydrotalcite-like compounds (HT) with 24%–48% Al3+-substitution have been synthesized in the Mg2+-Al3+-Fe(CN)64- system. Conditioning of the synthesized and air-dried compound with K4Fe(CN)64- solution at 80°C was essential to obtain the 80%–90% pure ionic Fe(CN)64- form on an equivalent basis. A linear decrease in ao with an increase in the mole ratio of R = Al3+/(Mg2+ + Al3+) was extended to R = 0.48. The formation of highly Al3+-substituted HTs has been corroborated by the decrease in the hexagonal lattice constant ao down to 3.016 Å. The ao value was independent of the interlayer anions. The CO2 adsorption profiles were dependent upon both the Al3+-substitution and the interlayer distance. The isosteric heat of CO2 adsorption was 43.3 kJ mol-1 in the range of adsorption of 20 to 40 cm3 g-1 at 298 K and 0.1 MPa.

Key Words

Al3+-substitution CO2 adsorption Hydrotalcite-like compound Ion exchange 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allmann, R. (1968) The crystal structure of pyroaurite: Acta Crystallogr. B24, 972–977.CrossRefGoogle Scholar
  2. Bish, L. and Brindley, G. W. (1977) A reinvestigation of takovite, a nickel aluminum hydroxy-carbonate of the pyroaurite group: Amer. Mineral. 62, 458–464.Google Scholar
  3. Brindley, G. W. and Kikkawa, S. (1979) A crystal-chemical study of Mg, Al, and Ni, Al hydroxy-perchlorates and hydroxy-carbonates: Amer. Mineral. 64, 836–843.Google Scholar
  4. Clearfield, A. (1988) Role of ion exchange in solid-state chemistry: Chem. Rev. 88, 125–148.CrossRefGoogle Scholar
  5. Evans, J. V. and Whateley, T. L. (1967) Infrared study of adsorption of carbon dioxide and water on magnesium oxide: Trans. Faraday Soc. 63, 2769–2777.CrossRefGoogle Scholar
  6. Gastuche, M. C., Brown, G., and Mortand, M. M. (1967) Mixed magnesium-aluminum hydroxides: Clay Miner. 7, 177–192.CrossRefGoogle Scholar
  7. Idemura, S., Suzuki, E., and Ono, Y. (1989) Electronic state of iron complexes in the interlayer of hydrotalcite-like materials: Clays & Clay Minerals, 37, 553–557.CrossRefGoogle Scholar
  8. Ito, W. (1993) Recovery of carbon dioxide by adsorbents: Handbook of Adsorption Technology, H. Shimizhu, ed., NTS Ltd., Tokyo, 761–765 (in Japanese).Google Scholar
  9. Kikkawa, S. and Koizumi, M. (1982) Ferrocyanide anion bearing Mg, Al hydroxide: Mater. Res. Bull. 17, 191–198.CrossRefGoogle Scholar
  10. Komarneni, S. and Tsuji, M. (1989) Selective cation exchange in substituted tobermorites: J. Am. Ceram. Soc. 72, 1668–1674.CrossRefGoogle Scholar
  11. Miyata, S. (1975) The synthesis of hydrotalcite-like compounds and their structure and physico-chemical proper-ties-I: The systems Mg2+-Al3+-NO3−, Mg2+-Al3+-Cl, Mg2+-Al3+-CIO4, Ni2+-Al3+-Cl and Zn2+-Al3+-Cl: Clays & Clay Minerals 23, 369–375.CrossRefGoogle Scholar
  12. Miyata, S. (1980) Physico-chemical properties of synthesis of new hydrotalcites in relation to composition: Clays & Clay Minerals 28, 50–56.CrossRefGoogle Scholar
  13. Miyata, S. (1983) Anion-exchange properties of hydrotalcite-like compounds: Clays & Clay Minerals 31, 305–311.CrossRefGoogle Scholar
  14. Miyata, S. and Hirose, T. (1978) Adsorption of N2, O2, CO2 and H2 on hydrotalcite-like system: Mg2+-Al3+-Fe(CN)64− Clays & Clay Minerals 26, 441–447.CrossRefGoogle Scholar
  15. Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed., John Wiley & Sons, New York, 106–124.Google Scholar
  16. Nishizawa, K., Kodama, T., Tabata, M., Yoshida, T., Tsuji, M., and Tamaura, Y. (1992) Adsorption of CO2 on oxygen-deficient magnetite: Adsorption enthalpy and adsorption isotherm: J. Chem. Soc. Faraday Trans. 88, 2771–2773.CrossRefGoogle Scholar
  17. Pausch, I., Lohse, H. H., Schurmann, K., and Allmann, R. (1986) Synthesis of disordered and Al-rich hydrotalcite-like compounds: Clays & Clay Minerals 34, 507–510.CrossRefGoogle Scholar
  18. Ruthven, D. M. (1984) Thermodynamics of adsorption: in Principles of Adsorption & Adsorption Process, John Wiley & Sons, New York, 62–64.Google Scholar
  19. Sazarashi, M., Takeshita, K., Kumagai, M., Tamura, T., and Takashima, Y. (1992) Recovery of nitrogen oxides as nitric acid by mineral zeolite: J. At. Energy Soc. Jpn. 34, 529–534 (in Japanese).CrossRefGoogle Scholar
  20. Shannon, R. D. (1976) Revised effective ionic radii and systematic studies of inter-atomic distances in halides and chalcogenides: Acta Crystallogr. A32, 751–946.CrossRefGoogle Scholar
  21. Sissoko, I., Iyagba, E. T., Sahai, R., and Biloen, P. (1985) Anion intercalation and exchange in Al(OH)3-derived compounds: J. Solid State Chem. 60, 283–288.CrossRefGoogle Scholar
  22. Taylor, H. F. W. (1973) Crystal structure of some double hydroxide minerals: Mineral. Mag. 39, 377–389.CrossRefGoogle Scholar
  23. Thevenot, F., Szymanski, R., and Chaumette, P. (1989) Preparation and characterization of Al-rich Zn-Al hydrotalcite-like compounds: Clays & Clay Minerals 37, 396–402.CrossRefGoogle Scholar
  24. Tsuji, M. and Komarneni, S. (1989) Alkali metal ion exchange selectivity of Al-substituted tobermorite: J. Mater. Res. 4, 698–703.CrossRefGoogle Scholar
  25. Tsuji, M., Komarneni, S., and Malla, P. (1991) Substituted tobermorites: 27Al and 29Si MASNMR, cation exchange, and water sorption studies. J. Am. Ceram. Soc. 74, 274–279.CrossRefGoogle Scholar
  26. Tsuji, M., Mao, G., and Tamaura, Y. (1992) On the thermodynamic treatment for anion exchange in hydrotalcite-like compounds: Clays & Clay Minerals 40, 742–743.CrossRefGoogle Scholar
  27. Tsuji, M., Mao, G., and Tamaura, Y. (1993a) Hydrotalcites with an extended Al3+-substitution: Synthesis, simultaneous TG-DTA-MS study, and their CO2 adsorption behaviors: J. Mater. Res. 8, 1137–1142.CrossRefGoogle Scholar
  28. Tsuji, M., Tabata, M., and Tamaura, Y. (1993b) CO2 decomposition by oxide ceramics intercalated in layer compound: J. Am. Ceram. Soc. (in press).Google Scholar
  29. Wilson, A. J. C. (1951) Structure Reports 11, p. 42.Google Scholar
  30. Wykoff, R. W. G. (1963) Crystal Structure, Vol. 1, John Wiley and Sons, New York, p. 268.Google Scholar
  31. Yamaoka, T., Abe, M., and Tsuji, M. (1989) Synthesis of Cu-Al hydrotalcite-like compound and its ion exchange property: Mater. Res. Bull. 24, 1183–1199.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1993

Authors and Affiliations

  • Gang Mao
    • 1
  • Masamichi Tsuji
    • 1
  • Yutaka Tamaura
    • 1
  1. 1.Department of Chemistry, Research Center for Carbon Recycling & UtilizationTokyo Institute of TechnologyMeguro-kuJapan

Personalised recommendations