Clays and Clay Minerals

, Volume 41, Issue 6, pp 693–701 | Cite as

Layer Silicates from Serpentinite-Pegmatite Contact (Wiry, Lower Silesia, Poland)

  • J. Jelitto
  • E. Dubińska
  • A. Wiewióra
  • P. Bylina


Highly tectonized contact between serpentinite and younger pegmatite in the magnesite mine of Wiry contains various layer silicates. Vermiculite, chlorite, smectite, and interstratified mica-vermiculite were recognized by means of routine XRD examination. Two three component interstratifications of mica-vermiculite-chlorite and chlorite-swelling chlorite-smectite were identified by a combined procedure of deconvolution of the XRD patterns and simulation of XRD tracings. A mineral with large diffraction maxima, displaying “chlorite intergrade” characteristics, appeared to be a mixture of chlorite, mixed layer chlorite-smectite, and vermiculite. Polytypes of phyllosilicates were determined by the X-ray transmission method. Due to the heritage of parent mineral polytype structure by transitional products of alteration, two distinct sequences of layer silicates were observed: one formed from trioctahedral mica (vermiculite, mixed layer mica-vermiculite); and one evolved from chlorite (e.g., mixed layer chlorite-swelling chloritesmectite). A tentative scheme of the primary contact zone structure, not obscured by subsequent brittle tectonics either by transformation of layer silicates, is proposed.

Key Words

Chlorite Intergrade Mica SEM Serpentinite/pegmatite contact Three component interstratified minerals Vermiculite Weathering X-ray powder 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, S. W. (1975) Chlorites: in Soil Components, Vol. 2, Inorganic Components, J. E. Gieseking, ed., Springer-Verlag, New York, 191–263.CrossRefGoogle Scholar
  2. Bailey, S. W. (1980) Structures of layer silicates: in Crystal Structures of Clay Minerals and Their X-ray Identification, G. W. Brindley and G. Brown, eds., Mineralogical Society Monograph No. 5, 1–124.Google Scholar
  3. Bailey, S. W. (1982) Nomenclature for regular interstratifications: A report of the AIPEA Nomenclature Committee, Supplement to AIPEA New letters 18, 1–12.Google Scholar
  4. Barnhisel, R. I. (1977) Chlorites and hydroxy interlayered vermiculite and smectite: in Minerals in Soil Environments: Soil Science Society of America, Madison, Wisconsin, 331–356.Google Scholar
  5. Basset, W. A. (1963) The geology of vermiculite occurrences: Clays & Clay Minerals 12, 61–69.Google Scholar
  6. Beaufort, D. (1987) Interstratified chlorite/smectite (“meta-morphic vermiculite”) in the upper precambrian greywackes of Rouez, Sarthe, France: Proc. Int. Clay Conf. Denver 1985, L. G. Schultz, H. van Olphen, and F. A. Mumpton, eds., The Clay Minerals Society, Bloomington, Indiana, 59–65.Google Scholar
  7. Brindley, G. W. (1966) Ethylene glycol and glycerol complexes of smectites and vermiculites: Clay Miner. 6, 237–259.CrossRefGoogle Scholar
  8. Brindley, G. W. and de Souza, J. V. (1975) A golden-colored, ferri-nickel chloritic mineral from Morro do Niquel, Minas Gerais, Brasil: Clays & Clay Minerals 23, 11–15.CrossRefGoogle Scholar
  9. Buurman, P., Meijer, E. L., and van Wijck, J. H. (1988) Weathering of chlorite and vermiculite in ultramafic rocks of Cabo Ortegal, Northwestern Spain: Clays & Clay Minerals 36, 263–269.CrossRefGoogle Scholar
  10. de la Calle, C., Dubermat, J., Suquet, H., Pezerat, H., Gaultier, J., and Mamy, J. (1976) Crystal Structure of two-layer Mg-vermiculites and Na-, Ca-vermiculites, Proc. Internatl. Conf. 1975, Mexico City, Applied Publications Ltd: Wilmette, Illinois, 201–209.Google Scholar
  11. de la Calle, C. and Suquet, H. (1988) Vermiculite: Chapter 12 in Reviews in Mineralogy, Vol. 19, Hydrous Phyllosili-cates (Exclusive of Micas), S. W. Bailey, ed., Mineralogical Society of America, Chelsea, Michigan, 455–492.CrossRefGoogle Scholar
  12. Curtis, C. D. and Brown, P. E. (1969) The metasomatic development of zoned ultrabasic bodies in Unst, Shetland: Contrib. Mineral. Petrol. 24, 275–292.CrossRefGoogle Scholar
  13. De Kimpe, C. R., Miles, N., Kodama, H., and Dejou, J. (1987) Alteration of phlogopite to corrensite at Sharbot Lake, Ontario: Clays & Clay Minerals 35, 150–158.CrossRefGoogle Scholar
  14. Drits, V. and Sakharov, B. A. (1976) X-ray Structural Analysis of Mixed-layer Minerals (in Russian): Trans. A.S. U.S.S.R. 295, 1–252.Google Scholar
  15. Dubińska, E. and Szafranek, D. (1990) On the origin of layer silicates from Jordanόw (Lower Silesia, Poland): Arch. Mi-neralogiczne XLVI, 1–2, 19–36.Google Scholar
  16. Dubinska, E. and Wiewiόra, A. (1988) Layer silicates in the contact zone between granite and serpentinite, Jordanow, Lower Silesia, Poland: Clay Miner. 23, 459–470.CrossRefGoogle Scholar
  17. Gajewski, Z. (1970) Occurrence and properties of magnesites from the Gogolόw-Jordanόw serpentinite massif against the geological structure of the area (in Polish): Biul. Inst. Geol. No. 240. Z badań ziόz surowcόw Skalnych w Polsce, V, 55–142.Google Scholar
  18. Hoda, S. N. and Hood, W. C. (1972) Laboratory alteration of trioctahedral micas: Clays & Clay Minerals 20, 343–358.CrossRefGoogle Scholar
  19. Inoue, A. (1987) Conversion of smectite to chlorite by hydrothermal and diagenetic alterations, Hokuruku Kuroko Mineralization Area, northeast Japan: Proc. Int. Clay Conf. Denver 1985, L. G. Schultz, H. van Olphen, and F. A. Mumpton, eds., The Clay Minerals Society, Bloomington, Indiana, 158–164.Google Scholar
  20. Inoue, A. and Utada, M. (1991) Smectite to chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita Area, northern Honshu, Japan: Amer. Mineral. 76, 628–649.Google Scholar
  21. Jȩdrysek, M. O. and Hałas, S. (1990) The origin of magnesite deposits from the Polish Foresudetic Block ophiolites: Preliminary δ13C and δ18O investigations: Terra Nova. 2, 154–159.CrossRefGoogle Scholar
  22. Jonas, E. C. and Brown T. E. (1959) Analysis of interlayer mixtures of three clay mineral types by X-ray diffraction: J. Sediment. Petrol. 29, 77–86.Google Scholar
  23. Lvova, I. A. and Dyakonov, Y. C. (1973) Geological and mineralogical criteria of estimation of vermiculite raw material occurrences related to ultrabasic rocks (in Russian): Non-metallic Raw Materials in Ultramafic Rocks, Nauka, Moscow, 207–210.Google Scholar
  24. Majerowicz, A. (1972) Strzegom-Sobotka granitic massif. A petrological study (in Polish): Geol. Sudetica 6, 7–96.Google Scholar
  25. Majerowicz, A. (1981) Rock series of the Ślȩza Mt. group in the light of petrologic studies of ophiolitic complexes: Ophiolites and Initialites of the Northern Border of the Bohemian Massif, Vol. II, Potsdam-Freiberg, Academy of Science GDR & Polish Academy of Science, 172–193.Google Scholar
  26. Méring, S. (1949) X-ray diffraction in disordered layer structures: Acta Cryst. 2, 371–377.CrossRefGoogle Scholar
  27. Nagasawa, K., Brown, G., and Newman, A. C. D. (1974) Artificial alteration of biotite into a 14Å-layer silicate with hydroxy-aluminium interlayers: Clays & Clay Minerals 22, 241–252.CrossRefGoogle Scholar
  28. Niśkiewiczj, J. (1967) About so-called sandy-clayey Tertiary deposits close to serpentinite massif of Szklary (Lower Silesia) (in Polish): Rocznik Polskiego Towarzystwa Geolo-gicznego 37, 456–463.Google Scholar
  29. Noack, Y. and Colin, F. (1986) Chlorites and chloritic mixed-layer minerals in profiles on ultrabasic rocks from Moyango (Ivory Coast) and Angiquino (Brazil): Clay Miner. 21, 171–182.CrossRefGoogle Scholar
  30. Pin, C., Majerowicz, A., and Wojciechowska, I. (1988) Upper Palaeozoic oceanic crust in the Polish Sudetes: Nd-Sr isotope and trace element evidence: Lithos, 21, 195–209.CrossRefGoogle Scholar
  31. Pin, C., Puziewicz, J., and Duthou, J. L. (1989) Ages and origins of a composite granitic massif in the Variscan belt: A Rb-Sr study of the Strzegom-Sobόtka Massif, W. Sudetes (Poland): N. Jb. Miner. Abh. 160, 71–82.Google Scholar
  32. Proust, D., Eymery, J. P., and Beaufort, D. (1986) Supergene vermiculization of a magnesian chlorite: Iron and magnesium removal processes: Clavs & Clay Minerals, 34, 572–580.CrossRefGoogle Scholar
  33. Reynolds Jr., R.C. (1985) NEWMOD, a Computer Program for the Calculation of One-Dimensional Diffraction Patterns of Mixed-Layered Clays: Publ. by author, 8 Brook Road, Hanover, New Hampshire.Google Scholar
  34. Reynolds Jr., R. C. (1988) Mixed layer chlorite minerals: in Reviews in Mineralogy, Vol. 19, Hydrous Phyllosilicates (Exclusive of Micas), S. W. Bailey, ed., Mineralogical Society of America, Chelsea, Michigan, 601–629.CrossRefGoogle Scholar
  35. Rich, C. I. (1968) Hydroxy interlayers in expansible layer silicates: Clays & Clay Minerals 16, 15–30.CrossRefGoogle Scholar
  36. Ross, G. J. (1975) Experimental alteration of chlorites into vermiculites by chemical oxidation: Nature 255:5504, 133–134.CrossRefGoogle Scholar
  37. Ross, G. J. and Kodama, H. (1974) Experimental transformation of chlorite into a vermiculite: Clays & Clay Minerals, 22, 205–211.CrossRefGoogle Scholar
  38. Ross, G. J. and Kodama, H. (1976) Experimental alteration of a chlorite into a regularly interstratified chlorite-vermiculite by chemical oxidation: Clays & Clay Minerals 24, 183–190.CrossRefGoogle Scholar
  39. Sanford, R. F. (1982) Growth of ultramafic reaction zones in greenshist to amphibolite facies metamorphism: Am. J. Sci. 282, 543–616.CrossRefGoogle Scholar
  40. Shimoda, S. (1970) An expandable chlorite-like mineral from the Hanaoka Mine, Akita Prefecture, Japan: Clay Miner., 8, 352–359.CrossRefGoogle Scholar
  41. Vila, E., Ruiz-Amil, A., and Martin de Vidales, J. L. (1988) DRX. Computer program for X-ray powder diffraction analysis: Internal Report C.S.I.C., Madrid, Spain.Google Scholar
  42. Weiss, Z. and Wiewiora, A. (1986) Polytypism of micas. III. X-ray diffraction identification: Clays & Clay Minerals 34, 53–68.CrossRefGoogle Scholar
  43. Wiewiόra, A. and Dubińska, E. (1987) Origin of minerals with intermediate chlorite-vermiculite structure (Szklary, Poland): Chem. Geol. 60, 185–197.CrossRefGoogle Scholar
  44. Wiewiόra, A. and Weiss, Z. (1985) X-ray powder transmission diffractometry determination of mica polytypes: Method and application to natural samples: Clay Miner. 20, 231–248.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1993

Authors and Affiliations

  • J. Jelitto
    • 1
  • E. Dubińska
    • 1
  • A. Wiewióra
    • 2
  • P. Bylina
    • 2
  1. 1.Institute of Geochemistry, Mineralogy and Petrography, Faculty of GeologyWarsaw UniversityWarsawPoland
  2. 2.Institute of Geological SciencesPolish Academy of SciencesWarsawPoland

Personalised recommendations