Clays and Clay Minerals

, Volume 41, Issue 6, pp 662–667 | Cite as

The Chemical Form of Vanadium (IV) in Kaolinite

  • A. U. Gehring
  • I. V. Fry
  • J. Luster
  • Garrison Sposito


A combined application of electron paramagnetic resonance (EPR) and Fourier-transform infrared (FTIR) spectroscopies with thermal methods was used to determine the chemical form of V(IV) in a Georgia kaolinite (KGa-I). Precise values of the EPR spectroscopic g-values and hyperfine coupling constants were obtained for an untreated sample (g = 1.940, A = 18.71 mT; g = 1.966, A = 7.63 mT). Heating the sample to 1000°C in steps while monitoring phase changes with EPR and FTIR spectra led to the following structural interpretations: 1) Vanadium (IV) occurs almost entirely as an isomorphically substituted species in the octahedral sheet of KGa-1 kaolinite; 2) during the dehydroxylation of kaolinite at about 500°C and the subsequent formation of metakaolinite, V(IV)-substituted octahedral sites are readily converted into truncated octahedra exhibiting fourfold coordination; and 3) in these highly distorted four-coordinated sites, V(IV) is metastable, being completely oxidized at about 800°C.

Key Words

Electron paramagnetic resonance Isomorphic substitution Kaolinite Vanadium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angel, B. R. and Hall, P. L. (1973) Electron spin resonance studies of kaolins: in Proceedings 1972 International Clay Conference, B. R. Serratosa, ed., C.S.I.R., Madrid, 47–60.Google Scholar
  2. Angel, B. R. and Vincent, W. E. J. (1978) Electron spin resonance studies of iron oxides associated with the surface of kaolins: Clays and Clay Minerals 26, 263–272.CrossRefGoogle Scholar
  3. Arija, S. M., Okokpjan, S. C., and Wintruff, W. (1967) Paramagnetische Elektronen-resonanzspektren der höheren Vanadinoxide: Z. Anorg. Chem. 352, 102–112.CrossRefGoogle Scholar
  4. Ballhausen, C. J. and Gray, H. B. (1962) The electronic structure of the vanadyl ion: Inorg. Chem. 1, 111–122.CrossRefGoogle Scholar
  5. Beinert, H. (1972) Flavins and flavoproteins, including iron-sulfur proteins: in Biological Applications of Electron Spin Resonance, H. Swartz, J. R. Bolton, and D. C. Borg, eds., Wiley-Interscience, New York, 351–410.Google Scholar
  6. Bernas, B. (1968) A new method for the decomposition and comprehensive analysis of silicates by atomic absorption spectrometry: Anal. Chem. 40, 1682–1686.CrossRefGoogle Scholar
  7. Brindley, G. W. and Nakahaira, M. (1959) The kaolinite-mullite reaction series: II, metakaolinite: J. Am. Ceram. Soc. 42, 314–318.CrossRefGoogle Scholar
  8. Clark, R. J. H. (1968) The Chemistry of Titanium and Vanadium: Elsevier, Amsterdam, 329 pp.Google Scholar
  9. Cotton, F. A. and Wilkinson, G. (1989) Advanced Inorganic Chemistry: 5th ed., John Wiley, New York, 1455 pp.Google Scholar
  10. Cuttler, A. H. (1980) The behaviour of synthetic 57Fe-doped kaolin: Mössbauer and electron paramagnetic resonance studies: Clay Miner. 15, 429–444.CrossRefGoogle Scholar
  11. Farmer, V. C. (1974) The Infrared Spectra of Minerals: Mineralogical Society, London, 539 pp.CrossRefGoogle Scholar
  12. Gehring, A. U. and Karthein, R. (1990) An ESR and calorimetric study of iron oolitic samples from the Northampton ironstone: Clay Miner. 25, 303–311.CrossRefGoogle Scholar
  13. Gehring, A. U., Fry, I. V., Luster, J., and Sposito, G. (1993) Vanadium (IV) in a multimineral lateritic saprolite: A ther-moanalytic and spectroscopic study: Soil Sci. Soc. Am. J. 57, 868–873.CrossRefGoogle Scholar
  14. Goodman, B. A. and Raynor, J. B. (1970) Electron spin resonance of transition metal complexes: Adv. Inorg. Chem. Radiochem. 13, 135–362.CrossRefGoogle Scholar
  15. Hall, P. L. (1980) The application of electron spin resonance spectroscopy to studies of clay minerals: I. Isomorphous substitutions and external surface properties: Clay Miner. 15, 321–335.CrossRefGoogle Scholar
  16. Jones, J. P. E., Angel, B. R., and Hall, P. L. (1974) Electron spin resonance studies of doped synthetic kaolinite. II: Clay Miner. 10, 257–270.CrossRefGoogle Scholar
  17. Leonard, A. J. (1977) Structural analysis of the transition phases in the kaolinite-mullite thermal sequence: J. Am. Ceram. Soc. 60, 37–43.CrossRefGoogle Scholar
  18. Lombardi, G., Russell, J. D., and Keller, W.D. (1987) Compositional and structural variations in the size fractions of a sedimentary and hydrothermal kaolin: Clays & Clay Minerals 35, 321–335.CrossRefGoogle Scholar
  19. MacKenzie, K. J. D., Brown, I. W. M., Meinhold, R. H., and Bowden, M. E. (1985) Outstanding problems in the kaolinite-mullite reaction sequence investigated by 29Si and 27Al solid-state nuclear magnetic resonance: I. Metakaolinite: J. Am. Ceram. Soc. 68, 293–297.CrossRefGoogle Scholar
  20. McBride, M. B. (1979) Mobility and reactions of VO2+ on hydrated smectite surfaces: Clays & Clay Minerals 27, 91–96.CrossRefGoogle Scholar
  21. MCBRIDE, M. B. (1990) Electron spin resonance spectroscopy: in Instrumental Surface Analysis of Geological Materials, D. L. Perry, ed., VCH Publ., New York, 233–281.Google Scholar
  22. MEADS, R. E. AND MALDEN, P. J. (1975) Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions: Clay Miner. 10, 313–345.CrossRefGoogle Scholar
  23. Percival, H. J., Duncan, J. F., and Foster, P. K. (1974) Interpretation of the kaolinite-mullite reaction sequence from infrared absorption spectra: J. Am. Ceram. Soc. 57, 57–61.CrossRefGoogle Scholar
  24. Van Olphen, H. and Fripiat, J. J. (1979) Data Handbook for Clay Materials and Other Nonmetallic Minerals: Per-gamon, Oxford, 346 pp.Google Scholar
  25. Watanabe, T., Shimizu, H., Nagasawa, K., Masuda, A., and Saito, H. (1987) 29Si and 27Al-MAS/NRM study of the thermal transformation of kaolinite: Clay Miner. 22, 37–48.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1993

Authors and Affiliations

  • A. U. Gehring
    • 1
  • I. V. Fry
    • 2
  • J. Luster
    • 1
  • Garrison Sposito
    • 1
  1. 1.Department of Soil ScienceUniversity of California BerkeleyCaliforniaUSA
  2. 2.Department of Plant BiologyUniversity of California BerkeleyCaliforniaUSA

Personalised recommendations