Advertisement

Clays and Clay Minerals

, Volume 41, Issue 3, pp 360–364 | Cite as

Swelling Properties of Microbially Reduced Ferruginous Smectite

  • W. P. Gates
  • H. T. Wilkinson
  • J. W. Stucki
Article

Abstract

Structural Fe in ferruginous smectite (sample SWa-1, Source Clays Repository of the Clay Minerals Society) was reduced by a mixture of five Pseudomonas species of bacteria in a defined Fe-free medium to determine the effect of microbial reduction on clay swelling. Iron(II), total Fe, and gravimetric water content (mw/mc) were determined in clay gels equilibrated at applied pressures of 0.1, 0.3, and 0.5 MPa. The water content of microbially reduced SWa-1 decreased at all three applied pressures as the Fe(II) content approached about 0.8 mmol Fe(II)/g-clay. As Fe(II) increased from 0.8 mmol/g-clay, however, further change in mw/mc was negligible. Concurrent with microbial reduction of structural Fe was a significant decrease in the swelling pressure (PI) of SWa-1: for example, when mw/mc = 1.2 (g/g), PI changed from 0.47 MPa at Fe(II) = 0.2, to 0.19 MPa at Fe(II) = 0.9 mmol/g-clay. Both biologically and chemically reduced smectites displayed lower values of mw/mc and a concurrent decrease in II as Fe(II) content increased, but the effect of Fe(II) on mw/mc was greater for the microbially reduced smectites at all applied pressures.

Key Words

Dithionite Microorganism Pseudomonas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chenu, C. (1989) Influence of a fungal polysaccharide, scleroglucan, on clay microstructure: Soil Biol. Biochem. 21, 299–305.CrossRefGoogle Scholar
  2. Chenu, C. and A. M. Jaunet. (1990) Modifications de l’organisation texturale d’une montmorillonite calcique liées à l’adsorption d’un polysaccharide: C.R. Acad. Sci. Paris t.310, Série II, 975–980.Google Scholar
  3. Egashira, K. and Ohtsubo, M. (1983) Swelling and mineralogy of smectites in paddy soils derived from marine alluvium, Japan: Geoderma 29, 119–127.CrossRefGoogle Scholar
  4. Foster, M. D. (1953) Geochemical studies of clay minerals: II. Relation between ionic substitution and swelling in montmorillonites: Amer. Mineral. 38, 994–1006.Google Scholar
  5. Goodman, B. A., Russell, J. D., Fraser, A. R., and Woodhams, F.W.D. (1976) A Mossbauer and I.R. spectroscopic study of the structure of nontronite: Clays & Clay Minerals 24, 53–59.CrossRefGoogle Scholar
  6. King, E. O., Ward, M. K., and Raney, D. E. (1954) Two simple media for the demonstration of pyocyanin and fluorescein: J. Lab. Clin. Med. 44, 301–307.Google Scholar
  7. Khaled, E. M. and Stucki, J. W. (1991) Effects of iron oxidation state on cation fixation in smectites: Soil Sci. Soc. Amer. J. 55, 550–554.CrossRefGoogle Scholar
  8. Komadel, P. and J. W. Stucki. (1988) Quantitative assay of minerals for Fe2+ and Fe3+ using 1, 10-Phenanthroline: III. A rapid photochemical method. Clays & Clay Minerals 36, 379–381.CrossRefGoogle Scholar
  9. Komadel, P., Lear, P. R., and Stucki, J. W. (1990) Reduction and reoxidation of iron in smectites: Rate of reaction and extent of reduction: Clays & Clay Minerals 38, 203–208.CrossRefGoogle Scholar
  10. Komadel, P., Stucki, J. W., and Wilkinson, H. T. (1987) Reduction of structural iron in smectites by microorganisms: in Proc. 6th Meeting of the European Clay Groups, Seville, 1987, E. Galán, J. L. Pérez-Rodriquez, and J. Cornejo, eds., Sociedad Espanola de Arcillas, Sevilla, 322–324.Google Scholar
  11. Lamb, C. A. and Grady, R. I. (1963) A study of soil heaving with frost: Ohio Farm and Home Research 48, 43–47.Google Scholar
  12. Lear, P. R. and Stucki, J. W. (1987) Intervalence electron transfer and magnetic exchange in reduced nontronite: Clays & Clay Minerals 35, 373–378.CrossRefGoogle Scholar
  13. Lear, P. R. and Stucki, J. W. (1989) Effects of iron oxidation state on the specific surface area of nontronite: Clays & Clay Minerals 37, 547–552.CrossRefGoogle Scholar
  14. Madsen, F. T. and Müller-Vonmoos, M. (1985) Swelling pressure calculated from mineralogical properties of a jurassic opalinum shale, Switzerland: Clays & Clay Minerals 33, 501–509.CrossRefGoogle Scholar
  15. Portz, H. L. (1967) Frost heaving of soil and plants 1. incidence of frost heaving of forage plants and meteorological relationships: Agron. J. 59, 341–344.CrossRefGoogle Scholar
  16. Shen, S., Stucki, J. W., and Boast, C. W. (1992) Effects of structural iron reduction on the hydraulic conductivity of Na-smectite: Clays & Clay Minerals 40, 381–386.CrossRefGoogle Scholar
  17. Stucki, J. W. (1988) Structural iron in smectites: in Iron in Soils and Clay Minerals, J. W. Stucki, B. A. Goodman, and U. Schwertmann, eds., D. Reidel, Dordrecht, The Netherlands, 625–675.CrossRefGoogle Scholar
  18. Stucki, J. W., Golden, D. C., and Roth, C. B. (1984a) Preparation and handling of dithionite reduced smectite suspensions: Clays & Clay Minerals 32, 191–197.CrossRefGoogle Scholar
  19. Stucki, J. W. and Lear, P. R. (1989) Variable oxidation states of iron in the crystal structure of smectite clay minerals: in Structures and Active Sites of Minerals, L. M. Coyne, D. Blake, and S. McKeever, eds., American Chemical Society, Washington, D.C., 330–358.Google Scholar
  20. Stucki, J. W., Low, P. F., Roth, C. B., and Golden, D. C. (1984b) Effects of oxidation state of octahedral iron on clay swelling: Clays & Clay Minerals 32, 357–362.CrossRefGoogle Scholar
  21. Stucki, J. W., Komadel, P., and Wilkinson, H. T. (1987) Microbial reduction of structural iron(III) in smectites: Soil Sci. Soc. Amer. J. 51, 1663–1665.CrossRefGoogle Scholar
  22. Stucki, J. W. and Tessier, D. (1991) Effects of iron oxidation state on the texture and structural order of Na-nontronite gels: Clays & Clay Minerals 39, 137–143.CrossRefGoogle Scholar
  23. Thornton, H. G. (1922) On the development of a standardized agar medium for counting soil bacteria, with especial regard to the repression of spreading colonies: Ann. Appl. Biol. 9, 241–274.CrossRefGoogle Scholar
  24. Weller, D. M. and Cook, R. J. (1983) Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads: Phytopath. 73, 463–469.CrossRefGoogle Scholar
  25. Wu, J., Roth, C. B., and Low, P. F. (1988) Biological reduction of structural iron in Na-nontronite: Soil Sci. Soc. Amer. J. 52, 295–296.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1993

Authors and Affiliations

  • W. P. Gates
    • 1
  • H. T. Wilkinson
    • 1
  • J. W. Stucki
    • 1
    • 1
  1. 1.Department of AgronomyUniversity of IllinoisUrbanaUSA

Personalised recommendations