Advertisement

Clays and Clay Minerals

, Volume 41, Issue 3, pp 335–340 | Cite as

Dimepiperate Adsorption and Hydrolysis on Al3+-, Fe3+-, Ca2+-, and Na+-Montmorillonite

  • A. Pusino
  • W. Liu
  • C. Gessa
Article

Abstract

The adsorption of the herbicide dimepiperate S-(α;α-dimethylbenzyl)-1-piperidinecarbothioate on homoionic Fe3+-, Al3+-, Ca2+-, and Na+-montmorillonite was studied in aqueous medium. The adsorption is described well by the Freundlich equation. The adsorption capacity decreases in the order Fe3+ > Al3+ > Ca2+ > Na+ clay. The dimepiperate adsorption from chloroform solution was also investigated by analytical, spectroscopic, and X-ray powder diffraction techniques. IR results suggest that the adsorption involves the interaction of the thioester carbonyl group of dimepiperate possibly with the surrounding water of metal ions. On Al3+ and Fe3+ clays, this interaction leads to hydrolysis of the thioester bond and formation of the thiol and carbamic acid derivatives that yield α-methylstyrene and piperidine, respectively.

Key Words

Adsorption Dimepiperate Hydrolysis Infrared spectroscopy Interlayer cations Mont-morillonite Pesticides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonelli, C., Castagna, G., and Domenichini, P. (1986) II dimepiperate: nuovo erbicida per il diserbo del riso, efficace contro il giavone (Eschinocloa crus-galli): Atti Giornate Fitopatologiche 3, 327–36.Google Scholar
  2. Bellamy, L. J. (1975) The Infrared Spectra of Complex Molecules: Chapman and Hall, London, 231–243.Google Scholar
  3. Chiou, C.T., Peters, L. J., and Freed, V.H. (1979) Aphysical concept of soil-water equilibria for nonionic organic compounds: Science 206, 831–832.CrossRefGoogle Scholar
  4. Crosby, D. G. (1976) Non biological degradation of herbicides in the soil: in Herbicides, Vol. 2, L. J. Andus, ed., Academic Press, London, 65–97.Google Scholar
  5. Fusi, P., Pvistori, G. G., and Bosetto, M. (1988) Interaction of fluazifop-butyl and fluazifop with smectites: Appl. Clay Science 3, 63–73.CrossRefGoogle Scholar
  6. Gessa, C., Pusino, A., Solinas, V., and Petretto, S. (1987) Interaction of fluazifop-butyl with homoionic clays: Soil Sci. 144, 420–424.CrossRefGoogle Scholar
  7. Giles, C. H., McEwan, J. H., Nakhwa, S. N., and Smith, D. (1960) Studies in adsorption. XI. A system of classification of solution adsorption isotherms and its use in diagnosis of adsorption mechanisms and in measurements of specific areas of soils: J. Chem. Soc., 3973–3993.Google Scholar
  8. Hendershot, W. H. and Duquette, M. (1986) A simple barium chloride method for determining cation exchange capacity and exchangeable cations: Soil Sci. Soc. J. Amer. 50, 605–608.CrossRefGoogle Scholar
  9. Ikeda, K. (1982) Herbicidal property of a thiolcarbamate herbicide MY-93: Shokubutsu no Kagaku Chosetsu 17, 163–9. (C. A. 99, 65795b, 1983).Google Scholar
  10. Micera, G., Pusino, A., Gessa, C., and Petretto, S. (1988) Interaction of fluazifop with Al-, Fe3+-, and Cu2+-saturated montmorillonite: Clays & Clay Minerals 36, 354–358.CrossRefGoogle Scholar
  11. Mortland, M. M. (1970) Clay organic-complex and interactions: Adv. Agron. 22, 75–115.CrossRefGoogle Scholar
  12. Mortland, M. M. (1976) Interactions between clays and organic pollutants: in Proc. Inter. Conf. Mexico City, 1975, S. W. Bailey, ed., Applied Publishing, Wilmette, Illinois, 469–175.Google Scholar
  13. Pusino, A. and Gessa, C. (1990) Catalytic hydrolysis of diclofop-methyl on Ca-, Na- and K-montmorillonite: Pestic. Sci. 30, 211–216.CrossRefGoogle Scholar
  14. Pusino, A., Gessa, C., and Kozlowski, H. (1988) Catalytic hydrolysis of quinalphos on homoionic clays: Pestic. Sci. 24, 1–8.CrossRefGoogle Scholar
  15. Pusino, A., Micera, G., Gessa, C., and Petretto, S. (1989) Interaction of diclofop and diclofop-methyl with Al3+-, Fe3+-, and Cu2+-saturated montmorillonite: Clays & Clay Minerals 37, 558–562.CrossRefGoogle Scholar
  16. Sánchez-Camazano, M. and Sánchez-Martín, M. J. (1991) Hydrolysis of azinphosmethyl induced by the surface of smectites: Clays & Clay Minerals 39, 609–613.CrossRefGoogle Scholar
  17. Senesi, N. and Testini, C. (1982) Physico-chemical investigations of interaction mechanisms between s-triazine herbicides and soil humic acids: Geoderma 28, 314–468.CrossRefGoogle Scholar
  18. Senesi, N. and Testini, C. (1984) Theoretical aspects and experimental evidence of the capacity of humic substances to bind herbicide by charge-transfer mechanism: Chemosphere 13, 461–468.CrossRefGoogle Scholar
  19. Tanaka, M. (1984) Dimepiperate (Yucamate, MY-93)anew herbicide for rice: Jpn. Pestic. Inf. 45, 18–20.Google Scholar

Copyright information

© The Clay Minerals Society 1993

Authors and Affiliations

  • A. Pusino
    • 1
  • W. Liu
    • 2
  • C. Gessa
    • 3
  1. 1.Istituto di Chimica Agraria e ForestaleUniversità di Reggio CalabriaGallina (RC)Italy
  2. 2.Department of ChemistryZhejiang UniversityHangzhouPeople’s Republic of China
  3. 3.Istituto di Chimica AgrariaUniversità di BolognaBolognaItaly

Personalised recommendations