Advertisement

Clays and Clay Minerals

, Volume 41, Issue 3, pp 328–334 | Cite as

Pillared Clays Prepared from the Reaction of Chromium Acetate with Montmorillonite

  • Antonio Jimenez-Lopez
  • Jose Maza-Rodriguez
  • Pascual Olivera-Pastor
  • Pedro Maireles-Torres
  • Enrique Rodriguez-Castellon
Article

Abstract

Refluxing chromium (III) acetate with a Na+-montmorillonite suspension gives rise to the intercalation of linear Cr(III) polyhydroxo-acetate oligomers. Thermally stable chromia pillared mont-morillonite materials are obtained upon calcination under ammonia up to 625°C, and basal expansions up to 6 Å are maintained. The porous materials retain high surface areas (366–464 m2 g−1), a micropore volume of 0.1 cm3 g−1 and narrow pore size distributions centered between 7.5 and 12 Å. The most thermally stable materials in air were those prepared under ammonia at 625°C, containing NH4+ as the exchangeable ion.

Key Words

Chromia Montmorillonite Pillaring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J. M. (1987) Synthetic organic chemistry using pillared cation-exchange acid-treated montmorillonite catalyst. A review: App. Clay Sci. 2, 309–342.CrossRefGoogle Scholar
  2. Bornholdt, K., Corker, J. M., Evans, J., and Rummey, J. M. (1991) EXAFS Studies of the Formation of Chromia Pillared Clay Catalysts: Inorg. Chem. 30, 2–4.CrossRefGoogle Scholar
  3. Brindley, G. W. and Yamanaka, S. (1979) A study of hydroxychromium montmorillonites and the form of the hydroxychromium polymers: Amer. Mineral 64, 830–835.Google Scholar
  4. Carr, R. M. (1985) Hydration states of interlaminar chromium ions in montmorillonite: Clays & Clay Minerals 3, 357–361.CrossRefGoogle Scholar
  5. Cotton, F. A. and Wilkinson, G. (1988) Advanced Inorganic Chemistry, 5th ed., Wiley, New York.Google Scholar
  6. Cranston, R. W. and Inkley, F. A. (1957) The determination of pore structures from nitrogen adsorption isotherms: Adv. Catal. 9, 143–156.Google Scholar
  7. Dubinin, M. M. (1966) Chemistry and Physics of Carbon, P. L. Walker, ed., Vol. 2, Marcel Dekker, New York.Google Scholar
  8. Giles, C. H., McEwan, T. H., Nakhwa, S. N., and Smith, D. (1960) Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms and its use in diagnosis of adsorption mechanisms and in measurement of specific surface area of solids: J. Chem. Soc., 3973–3993.Google Scholar
  9. Gregg, S. J. and Sing, K. S. W. (1982) Adsorption, Surface Area and Porosity: 2nd ed., Academic Press, Orlando.Google Scholar
  10. Guerrero-Ruiz, A., Rodríguez-Ramos, I., Fierro, J. L. G., Jiménez-López, A., Olivera-Pastor, P., and Maireles-Torres, P. (1992) Catalytic activity of layered α (Sn or Zr)-phosphates and chromia pillared derivatives for isopropyl alcohol decomposition: Appl. Catal. 92, 81–92.CrossRefGoogle Scholar
  11. Maireles-Torres, P., Olivera-Pastor, P., Rodriguez-Castellón, E., Jiménez-López, A., and Tomlinson, A. A. G. (1991a) Porous chromia pillared α-zirconium phosphate materials prepared via colloidal methods: J. Mat. Chem. 1(5), 739–746.CrossRefGoogle Scholar
  12. Maireles-Torres, P., Olivera-Pastor, P., Rodriguez-Castellón, E., Jiménez-López, A., and Tomlinson, A. A. G. (1991b) Porous chromia-pillared α-tin phosphate materials: J. Solid State Chem. 96, 368–380.CrossRefGoogle Scholar
  13. Mitchell, I. V. (1990) Pillared Layered Structures, Current Trends and Applications: Elsevier Applied Science, London.Google Scholar
  14. Monsted, L., Monsted, O., and Springborg, J. (1985) Evidence for “classical” hydroxo-bridges polymers in hydrolyzed hexaaquachromium: Inorg. Chem. 24, 3496–3498.CrossRefGoogle Scholar
  15. Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed., Wiley, New York.Google Scholar
  16. Navarro-Martos, J. (1977) Estudio de la superficie de los geles de Al2O3-Cr2O3 en función de su composición: Tesis Doctoral, Universidad de Granada, Spain, 296 pp.Google Scholar
  17. Pesquera, C., González, F., Benito, I., Mendioroz, S., and Pajares, J. A. (1991) Synthesis and characterization of pillared montmorillonite catalysts: Appl. Catal. 69, 97–104.CrossRefGoogle Scholar
  18. Pinnavaia, T. J., Tzou, M. S., and Landau, S.D. (1985) New chromia pillared clay catalyst: J. Am. Chem. Soc. 107, 4783–4786.CrossRefGoogle Scholar
  19. Poncelet, G. and Schutz, A. (1986) Pillared montmorillonite and beidellite. Acidity and catalytic properties: in Chemical Reactions in Organic and Inorganic Constrained Systems, R. Setton, ed., Riedel Publishing Co., Dordrecht.Google Scholar
  20. Powder Diffraction File (1967) Joint Committee of Powder Diffraction Standards, Philadelphia.Google Scholar
  21. Stunzi, H. and Marty, W. (1983) Early stage of the hydrolysis of chromium(III) in aqueous solution. 1. Characterization of a tetrameric species: Inorg. Chem. 22, 2145–2150.CrossRefGoogle Scholar
  22. Tzou, M. S. and Pinnavaia, T. J. (1988) Chromia pillared clays: in Pillared Clays: Catalysis Today, R. Burch, ed., Elsevier, Amsterdam.Google Scholar
  23. Vaughan, D. E. W. (1988) Pillared clays, a historical perspective: in Pillared Clays: Catalysis Today, R. Burch, ed., Elsevier, Amsterdam.Google Scholar

Copyright information

© The Clay Minerals Society 1993

Authors and Affiliations

  • Antonio Jimenez-Lopez
    • 1
  • Jose Maza-Rodriguez
    • 1
  • Pascual Olivera-Pastor
    • 1
  • Pedro Maireles-Torres
    • 1
  • Enrique Rodriguez-Castellon
    • 1
  1. 1.Departamento de Química Inorgánica Cristalografía y MineralogíaFacultad de Ciencias Universidad de MálagaMálagaEspaña

Personalised recommendations