Clays and Clay Minerals

, Volume 40, Issue 5, pp 620–623 | Cite as

The Microstructure of Dilute Clay and Humic Acid Suspensions Revealed by Freeze-Fracture Electron Microscopy: Discussion

  • Hojatollah Vali
  • Reinhard Hesse

Key Words

Cryofixation Freeze-fracture Microstructure of clay suspensions Smectite Transmission electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bachmann, L. (1987) Freeze-etching of dispersion, emulsions and macromolecular solution of biological interest: in Cryotechniques in Biological Electron Microscopy, R. A. Steinbrecht and K. Zierold, eds., Chapter 9, Springer-Verlag, Berlin/Heidelberg/New York, 192–204.CrossRefGoogle Scholar
  2. Bachmann, L., and Schmitt, W. W. (1971) Improved cryofixation applicable to freeze-etching: Proc. Natl. Acad. Sci., USA 68, 2149–2152.CrossRefGoogle Scholar
  3. Costello, M. J., and Corless, J. M. (1978) The direct measurement of temperature changes with freeze-fracture specimens during quenching in liquid coolants: J. Microsc. 112, 17–37.CrossRefGoogle Scholar
  4. Gu, B., and Doner, H. E. (1992) The microstructure of dilute clay and humic acid suspensions revealed by freeze-fracture electron microscopy: Clays & Clay Minerals 40, 246–250.CrossRefGoogle Scholar
  5. Menco, B. P. M. (1986) A survey of ultra-rapid cryofixation method with particular emphasis on application to freeze-fracturing, freeze-etching and freeze-substitution: J. Electro Microsc. Tech. 4, 117–240.Google Scholar
  6. Moor, H., Kistler, J., and Müller, M. (1976) Freezing in a propane jet: Experientia 32, 805.Google Scholar
  7. Moor, H. (1964) Die Gefrierfixation lebender Zellen und ihre Anwendung in der Elektronmikroskopie: Z. Zellforschung 62, 546–580.CrossRefGoogle Scholar
  8. Müller, M., Meister, N., and Moor, H. (1980) Freezing in a propane jet and its application in freeze-fracturing: Mikro-scopie (Wien) 36, 129–140.Google Scholar
  9. Plattner, H., and Bachmann, L. (1982) Cryofixation: A tool in biological ultrastructural research: Int. Rev. Cytol. 79, 237–304.CrossRefGoogle Scholar
  10. Pscheid, P., Schudt,C, and Plattner, H. (1981) Cryofixation of monolayer cell cultures for freeze-fracturing without chemical pretreatments: J. Microsc. 121, 149–167.CrossRefGoogle Scholar
  11. Riehle, U. (1968) Schnellgefrieren organischer Präparate für die Elektronenmikroskopie: Chem Ing. Techn. 40, 213–218.CrossRefGoogle Scholar
  12. Riehle, U., and Hoechli, M. (1973) The theory and technique of high pressure freezing: in Freeze-etching, Techniques and Applications, E. L. Benedetti and P. Favard, eds., Soc. Franc. Microsc. Electron, Paris, 31–61.Google Scholar
  13. Robards, A. W., and Sleytr, U. B. (1985) Low temperature methods in biological electron microscopy: in Practical Methods in Electron Microscopy, 10, A. M. Glauert, ed., Elsevier, Amsterdam, New York, Oxford.Google Scholar
  14. Vali, H., and Bachmann, L. (1988) Ultrastructure and flow behaviour of colloidal smectite dispersions: J. Colloid Interface Sci. 126, 278–291.CrossRefGoogle Scholar
  15. Vali, H., Hesse, R., and Kohler, E. (1991) Combined freeze-etch replicas and HRTEM images as tools to study fundamental particles and multiphase nature of 2:1 layer silicates: Amer. Mineral. 76, 1953–1964.Google Scholar
  16. van Olphen, H. (1977) An Introduction to Clay Colloid Chemistry, 2nd ed., John Wiley & Sons, New York, 318 pp.Google Scholar
  17. van Olphen, H. (1989) Fundamental aspects of the stability and rheology of clay suspension: in Rheology of Clay/Water Systems, Workshop Notes, N. Güven, ed., Clay Minerals Society, Sacramento, California, 1–24.Google Scholar

Copyright information

© The Clay Minerals Society 1992

Authors and Affiliations

  • Hojatollah Vali
    • 1
  • Reinhard Hesse
    • 1
  1. 1.Department of Earth and Planetary SciencesMcGill UniversityMontrealCanada

Personalised recommendations