Clays and Clay Minerals

, Volume 40, Issue 5, pp 600–607 | Cite as

Color Variations Associated with Rapid Formation of Goethite from Proto-Ferrihydrite at pH 13 and 40°C

  • T. Nagano
  • S. Nakashima
  • S. Nakayama
  • K. Osada
  • M. Senoo


Color variations from brown to yellow of synthesized goethite have been studied colorimetrically and spectroscopically. Goethite with various colors was synthesized at pH 13 and 40°C by varying the incubation time. Colorimetry revealed that the b* value (yellowish chroma) in L*a*b* color space was a quantitative indicator of color variations of the diluted samples. From UV-VIS-NIR spectra, the increase in the b* value was found to be caused by the increase in crystal field absorptions due to goethite formation around 500 nm. The b* value was a good indicator of the relative proportion of goethite in the precipitates including ferrihydrite. X-ray diffraction patterns and infrared spectra revealed that crystallization of goethite was associated with loss of water from the proto-ferrihydrite.

Key Words

Crystallization Colorimetry Goethite Infrared spectroscopy L*a*b* color space UV-VIS-NIR spectroscopy X-ray diffractometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amonette, J. E., and Rai, D. (1990) Identification of noncrystalline (Fe,Cr)(OH)3 by infrared spectroscopy: Clays & Clay Minerals 38, 129–136.CrossRefGoogle Scholar
  2. Burns, R. G. (1985) Electronic spectra of minerals: in Chemical Bonding and Spectroscopy in Mineral Chemistry, F. J. Berry and D. J. Vaughan, eds., Chapman and Hall, London, 63–101.CrossRefGoogle Scholar
  3. Chukhrov, F. V., Zvyagin, B. B., Ermilova, L. P., and Gorshkov, A. I. (1973) New data on iron oxides in the weathering zone: Proc. Int. Clay Conf. 1972, 333–341.Google Scholar
  4. Combes, J. M., Manceau, A., Calas, G., and Bottero, Y. ( 1989) Formation of ferric oxides from aqueous solutions: A polyhedral approach by X-ray absorption spectroscopy: I. Hydrolysis and formation of ferric gels: Geochim. Cosmochim. Acta 53, 583–594.CrossRefGoogle Scholar
  5. Combes, J. M., Manceau, A., Calas, G., and Bottero, Y. ( 1990) Formation of ferric oxides from aqueous solutions: A polyhedral approach by X-ray absorption spectroscopy: II. Hematite formation from ferric gels: Geochim. Cosmochim. Acta 54, 1083–1091.CrossRefGoogle Scholar
  6. Eggleton, R. A., and Fitzpatrick, R. W. (1988) New data and a revised structural model for ferrihydrite: Clays & Clay Minerals 36, 111–124.CrossRefGoogle Scholar
  7. Eggleton, R. A., and Fitzpatrick, R. W. (1990) New data and a revised structural model for ferrihydrite: Reply: Clays & Clay Minerals 38, 335–336.CrossRefGoogle Scholar
  8. Feitknecht, W., and Michaelis, W. (1962) Über die Hydrolyse von Eisen (III) Perchlorat-Losungen, Helv. Chim. Acta 45, 212–224.CrossRefGoogle Scholar
  9. Glemser, O. (1959) Structure of some hydroxides and hydrous oxides: Nature 183, 943–944.CrossRefGoogle Scholar
  10. Johnston, J. H., and Lewis, D. G. (1983) A detailed study of the transformation of ferrihydrite to hematite in aqueous medium at 95°C: Geochim. Cosmochim. Acta 47, 1823–1831.CrossRefGoogle Scholar
  11. Karmanov, I.L., and Rozhkov, V. V. (1972) Experimental determination of quantitative relationships between the colour characteristics of soils and soil constituents: Pochvovedeniye 12, 71–79.Google Scholar
  12. Kosmas, C. S., Franzmeier, D. P., and Schulze, D. G. (1986) Relationship among derivative spectroscopy, color, crystalline dimensions, and Al substitution of synthetic goethites and hematites: Clays & Clay Minerals 34, 625–634.CrossRefGoogle Scholar
  13. Kubelka, P., and Munk, F. (1931) Z. Tech. Phys. 12, 593.Google Scholar
  14. Lewis, D. G., and Schwertmann, U. (1980) The effect of [OH] on the goethite produced from ferrihydrite under alkaline conditions: J. Colloid Interface Sci. 78, 543–553.CrossRefGoogle Scholar
  15. Manceau, A., Combes, J. M., and Calas, G. (1990) New data and a revised structural model for ferrihydrite: Comment: Clays & Clay Minerals 38, 331–334.CrossRefGoogle Scholar
  16. McCord, T. B., Clark, R. N., and Singer, R. B. (1982) Mars: Near-infrared spectral reflectance of surface regions and compositional implications: J. Geophy. Res. 87 B4, 3021–3032.CrossRefGoogle Scholar
  17. Munsell Book of Color, 2.5R-10G (1976) Munsell Color Macbeth Division of Kollmorgen Corporation, Baltimore, Maryland.Google Scholar
  18. Murray, J. W. (1979) Iron oxides: in Reviews in Mineralogy 6, Marine Minerals, R. G. Burns, ed., Mineralogical Society of America, Washington, D. C., 47–98.Google Scholar
  19. Nagano, T., and Nakashima, S. (1989) Study of colors and degree of weathering of granitic rocks by visible diffuse reflectance spectroscopy: Geochem. J. 23, 75–83.CrossRefGoogle Scholar
  20. Nagao, S., and Nakashima, S. (1991) A convenient method of color measurement of marine sediment by chromameter: Geochem. J. 25, 187–197.CrossRefGoogle Scholar
  21. Nakashima, S., Miyagi, I., Nakata, E., Sasaki, H., Nittono, S., Hirano, T., Sato, T., and Hayashi, H. (1992) Color measurement of some natural and synthetic minerals—I: Rep. Res. Inst. Natural Resources, Mining College, Akita Univ. 57, 57–76.Google Scholar
  22. Nobuoka, S. (1965) X-ray and infrared absorption studies on the formation process of α-Fe2O3 and a-FeOOH from ferric hydroxide precipitate: Kogyo Kagaku Zasshi 68, 2311–2317.CrossRefGoogle Scholar
  23. Nyquist, R. A., and Kagel, R. O. (1971) Infrared spectra of inorganic compounds (3800–45 cm−1): Academic Press, New York.Google Scholar
  24. Okamoto, S. (1968) Structure of the S-Fe2O3 (hydrate): J. Am. Ceram. Soc. 51, 54.Google Scholar
  25. Rao, C. N. R. (1963) Organic nitrogen compounds: in Chemical Applications of Infrared Spectroscopy: Academic Press, New York, 245–281.Google Scholar
  26. Schwertmann, U. (1985) The effect of pedogenic environments on iron oxide minerals: Adv. Soil Sci. 1, 172–200.Google Scholar
  27. Schwertmann, U. (1988a) Occurrence and formation of iron oxides in various pedoenvironments: in Iron in Soils and Clay Minerals, J. W. Stucki, B. A. Goodman, and U. Schwertmann, eds., NATO ASI ser. 217, 267–308.CrossRefGoogle Scholar
  28. Schwertmann, U. (1988b) Some properties of soil and synthetic iron oxides: in Iron in Soils and Clay Minerals, J. W. Stucki, B. A. Goodman, and U. Schwertmann, eds., NATO ASI ser. 217, 203–250.CrossRefGoogle Scholar
  29. Schwertmann, U. (1991) Methods of characterization: in Iron Oxides in the Laboratory, U. Schwertmann and R. M. Cornell, eds., VCH Verlagsgesellschaft mbH, Weinheim, 27–51.Google Scholar
  30. Schwertmann, U., and Fischer, W. R. (1966) Zur Bildung von α-FeOOH und α-Fe2O3 aus amorphous Eisen(III)-Hydroxid. III, Z. Anorg. Allg. Chem. 346, 137–142.CrossRefGoogle Scholar
  31. Schwertmann, U., and Murad, E. (1983) Effect of pH on the formation of goethite and hematite from ferrihydrite: Clays & Clay Minerals 31, 277–284.CrossRefGoogle Scholar
  32. Schwertmann, U., and Taylor, R. M. (1989) Iron oxides: in Minerals in Soil Environments, 2nd ed., Soil Sci. Soc. Amer. Book Series 1, 379–438.Google Scholar
  33. Schwertmann, U., Cambier, P., and Murad, E. (1985) Properties of goethites of varying crystallinity: Clays & Clay Minerals 33, 369–378.CrossRefGoogle Scholar
  34. Schwertmann, U., Kodama, H., and Fischer, W. R. (1986) Mutual interactions between organics and iron oxides: in Interactions of Soil Minerals with Natural Organics and Microbes, Soil Sci. Soc. Am., Madison, Wisconsin, 223–250.Google Scholar
  35. Shields, J. A., Paul, R. J., and Head, W. K. (1968) Spectrophotometry measurement of soil color and its relationship to moisture and organic matter: Can. J. Soil Sci. 48, 271–280.CrossRefGoogle Scholar
  36. Singer, R. B. (1982) Spectral evidence for the mineralogy of high-albedo soils and dust on Mars: J. Geophy. Res. 87 B12, 10159–10168.CrossRefGoogle Scholar
  37. Sugiyama, M. (1986) Chroma Meters: Minolta Techno Report, Minolta Camera Co. Ltd., Osaka.Google Scholar
  38. Torrent, J., Schwertmann, U., and Schulze, D. G. (1980) Iron oxide mineralogy of some soils of two river terrace sequences in Spain: Geoderma 23, 191–208.CrossRefGoogle Scholar
  39. Torrent, J., Schwertmann, U., Fechter, H., and Alferez, F. (1983) Quantitative relationships between soil color and hematite content: Soil Sci. 136, 354–358.CrossRefGoogle Scholar
  40. Towe, K. M., and Bradley, W. F. (1967) Mineralogical constitution of colloidal “hydrous ferric oxides”: J. Colloid Interface Sci. 24, 384–392.CrossRefGoogle Scholar
  41. Van Der Woude, J. H. A., and De Bruyn, P. L. (1983) Formation of colloidal dispersions from supersaturated iron(III) nitrate solutions. I. Precipitation of amorphous iron hydroxide: Colloids and Surfaces 8, 55–78.Google Scholar

Copyright information

© The Clay Minerals Society 1992

Authors and Affiliations

  • T. Nagano
    • 1
  • S. Nakashima
    • 2
  • S. Nakayama
    • 1
  • K. Osada
    • 1
  • M. Senoo
    • 1
  1. 1.Environmental Geochemistry LaboratoryJapan Atomic Energy Research Institute TokaiNaka, IbarakiJapan
  2. 2.Research Institute of Natural ResourcesAkita UniversityAkitaJapan

Personalised recommendations