Clays and Clay Minerals

, Volume 40, Issue 5, pp 593–599 | Cite as

Natural and Synthetic Copper Phyllosilicates Studied by XPS

  • Christine Mosser
  • Aimé Mosser
  • Michelangelo Romeo
  • Sabine Petit
  • Alain Decarreau


X-ray photoelectron spectroscopy (XPS) has been used to characterize the bonding state of Cu2+, Si4+, Al3+, and O2− ions in structural (octahedral and interlamellar) or adsorbed position in phyllosilicates. Five smectites, 5 kaolinites, and 1 chrysocolla with Cu(II) in known positions (octahedral, interlamellar, or surface adsorbed) have been investigated. Their spectra were compared with those of pure Cu metal and of pure Cu(I) and Cu(II) oxides.

The line for Cu 2p3/2 (binding energy of 935.4 eV) and well-defined shake-up lines (binding energy of about 943 eV) observed after 1 hr of X-ray irradiation are characteristic of Cu(II) in phyllosilicate octahedral sites. But due to the photoreduction effect, they show Cu(I) oxidation states (Cu 2p3/2, binding energy of 933.2 eV and near absence of shake-up lines) for the phyllosilicates with adsorbed Cu or in interlamellar positions. The kinetics of photoreduction distinguishes octahedral from interlamellar positions, and the latter from a surface adsorbed position. The enlargement of the FWHM (full width at half maximum) of XPS lines has been used to describe crystallochemical parameters linked to local ordering around the probe cations. Crystallization produces decreasing O 1 s and Cu 2p (octahedral cation) line widths but has no effect on the Si 2p (tetrahedral cation) line width. The enlargement of FWHM for all ion lines of the lattice is linked to the nature (Cu > Mg > Al) and the number and amount of structural cations in the phyllosilicates.

Key Words

Chrysocolla Cu ESCA Kaolinite Smectite XPS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asbrink, S., and Norrby, L. J. (1970) A refinement of the crystal structure of copper(II) oxide with a discussion of some exceptional E.s.d.’s: Acta Cryst. B26, 8, 8–15.CrossRefGoogle Scholar
  2. Canesson, P. (1982) E.S.C. A. studies of clay minerals: Dev. Sedimentol. 34 (Adv. Tech. Clay Miner. Anal.), J. J. Fripiat, ed., 211–226.Google Scholar
  3. Carrière, B., and Deville, J. P. (1977) X-ray photoelectron study of some silicon-oxygen compounds: J. Electron Spectrosc. Relat. Phenom. 10, 85–91.CrossRefGoogle Scholar
  4. Creach, M. (1988) Accumulation supergène de cuivre en milieu latéritique: Etude pétrologique, cristallochimique et géochimique de l’altération du skarn de Santa Blandina (Itapeva, Bresil): Thèse Doct., Univ. Poitiers, France, 124 pp.Google Scholar
  5. Decarreau, A. (1985) Partitioning of divalent transition element between octahedral sheet of trioctahedral smectites and water: Geochim. Cosmochim. Acta 49, 1537–1544.CrossRefGoogle Scholar
  6. Frost, D. C., Ishitani, A., and McDowell, C.A. (1972) X-ray photoelectron spectroscopy for copper compounds: Mol. Phys. 24, 861–877.CrossRefGoogle Scholar
  7. Hochella, M. F., and Brown, G. E., Jr. (1988) Aspects of silicate surface and bulk structure analysis using X-ray photoelectron spectroscopy (XPS): Geochim. Cosmochim. Acta 52, 1641–1648.CrossRefGoogle Scholar
  8. Hochella, M. F., and Carim, A. H. (1988) A reassessment of electron escape depth in silicon and thermally grown silicon dioxide thin films: Surface Sci. Lett. 197, L260–L268.CrossRefGoogle Scholar
  9. Huntress, W. T., and Wilson, L. (1972) An ESCA study of lunar and terrestrial materials: Earth Planet. Sci. Lett. 15, 59–64.CrossRefGoogle Scholar
  10. Koppelman, M. H., and Dillard, J. D. (1977) A study of the adsorption of Ni(II) and Cu(II) by clay minerals: Clays & Clay Minerals 25, 457–462.CrossRefGoogle Scholar
  11. Mosser, A., Romeo, M., Parlebas, J. C., Okada, K., and Kotani, A. (1991) Photoemission on 2p core levels of copper: An experimental and theoretical investigation of the reduction of copper monoxides: Solid State Communication 91,8, 641–644.CrossRefGoogle Scholar
  12. Mosser, C., Mestdagh, M., Decarreau, A., and Herbillon, A. (1990a) Spectroscopic (ESR, EXAFS) evidence of Cu for (Al-Mg) substitution in octahedral sheets of smectites: Clay Miner. 25, 271–282.CrossRefGoogle Scholar
  13. Mosser, C, Petit, S., Parisot, J. C., Decarreau, A., and Mestdagh, M. (1990b) Evidence of Cu in octahedral layers of natural and synthetic kaolinites: Chem. Geol. 84, 281–282.CrossRefGoogle Scholar
  14. Onorato, P. I. K., Alexander, M. N., Struck, C. W., Tasker, G. W., Uhlmann, D. R. (1985) Bridging and nonbridging oxygen atoms in alkali aluminosilicate glasses: J. Am. Ceram. Soc., 68, 6, C148–C150.CrossRefGoogle Scholar
  15. Petit, S. (1990) Etude cristallochimique de kaolinites ferrifères et cuprifères de synthèse (150-250°C): Thèse Doct., Univ. Poitiers, France, 237 p.Google Scholar
  16. Rosencwaig, A., Wertheim, G. K., and Guggenheim, H. J. (1971) Origins of satellites on inner-shell photoelectron spectra: Phys. Rev. Lett. 27, 479–481.CrossRefGoogle Scholar
  17. Seyama, H., and Soma, M. (1985) Bonding-state characterization of the constituent elements of silicate minerals by X-ray photoelectron spectroscopy: J. Chem. Soc., Faraday Trans. 1, 81 (2), 485–495.CrossRefGoogle Scholar
  18. Seyama, H., and Soma, M. (1988) Application of X-ray photoelectron spectroscopy to the study of silicate minerals: in Kokiritsu Kogai Kenkyusho Kenkyu Hokoku (Research Report from the National Institute for Environmental Studies, Japan) 111, 125 pp.Google Scholar
  19. Siegbahn, K., Nording, C. N., Fahlman, A., Nordberg, R., Hamrin, K., Hedman, J., Johansson, G., Bermark, T., Karlsson, S. E., Lindgren, I., and Lindgren, B. (1967) ESCA: Atomic, Molecular, and Solid State Structure Studied by Means of Electron Spectroscopy: Almqvist and Wiksells, Uppsala.Google Scholar
  20. Stucki, J. W., Roth, C. B., and Baitinger, W. E. (1976) Analysis of iron-bearing clay minerals by electron spectroscopy for chemical analysis (ESCA): Clays & Clay Minerals 24, 289–292.CrossRefGoogle Scholar
  21. Urch, D. S., and Murphy, S. (1974) The relationship between bond lengths and orbital ionisation energies for a series of aluminosilicates: J. of Electron Spectrosc. Relat. Phenom., 5, 167–171.CrossRefGoogle Scholar
  22. Wallbank, B., Johnson, C. E., and Main, I. G. (1973) Multielectron satellites in core electron photoemission from 3d° ions in solids: J. Phys. C, 6, L493–L495.Google Scholar
  23. Wyckoff, R. W. G. (1963) Crystal Structures: 2nd ed., 1, Interscience publishers, John Wiley and Sons, New York, 467 pp.Google Scholar

Copyright information

© The Clay Minerals Society 1992

Authors and Affiliations

  • Christine Mosser
    • 1
  • Aimé Mosser
    • 2
  • Michelangelo Romeo
    • 2
  • Sabine Petit
    • 3
  • Alain Decarreau
    • 3
  1. 1.Centre de Géochimie de la Surface, CNRSStrasbourgFrance
  2. 2.Institut de Physique et Chimie des Matériaux de StrasbourgStrasbourg CedexFrance
  3. 3.Laboratoire de Pétrologie de la Surface, URA 721 du CNRS, Université de PoitiersPoitiers CedexFrance

Personalised recommendations