Advertisement

Clays and Clay Minerals

, Volume 40, Issue 5, pp 575–585 | Cite as

Dithionite as a Dissolving Reagent for Goethite in the Presence of Edta and Citrate. Application to Soil Analysis

  • Elsa H. Rueda
  • María C. Ballesteros
  • Reynaldo L. Grassi
  • Miguel A. Blesa
Article

Abstract

A synergistic effect of reductant and complexant is observed in the dissolution of goethite by dithionite and citrate or EDTA. The rate data are interpreted using the surface complexation approach to describe the interface of the reacting oxide. Adsorption of both S2O 4 2− (D) and complexant (L) generates three surface complexes that define the dissolution behavior: ≡ Fe-D, ≡ Fe-L, and dimeric Open image in new window surface complexes. The initial rate increases at lower pH values because of increased surface complexation conditional formation constants. At pH values below 4, however, the fast decomposition of S2O 4 2− gives rise to a rapid depletion of reductant, and total dissolution is not observed. It is shown that for best analytical results in soil analysis, EDTA is a better complexant than citrate; the iron extracted in one dithionite-EDTA treatment at pH 5–6, under N2 at 315 K is not increased by increasing the number of extractions, and is equivalent to the total extractable iron found by previous procedures.

Key Words

Dithionite Goethite Iron analysis Iron dissolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilera, N. H., and Jackson, K. L. (1953) Iron oxide removal from soils and clays: Soil Sci. Soc. Amer. Proc. 17, 359–364.CrossRefGoogle Scholar
  2. Ardizzone, S., and Formaro, L. (1983) Temperature induced phase transformation of metastable Fe(OH)3 in the presence of ferrous ions: Materials Chem. Phys. 8, 125.CrossRefGoogle Scholar
  3. Atkinson, R. J., Posner, A. M., and Quirk, J. P. (1968) Crystal nucleation in Fe(III) solutions and hydroxide gels: J. Inorg. Nucl. Chem. 30, 2371–2381.CrossRefGoogle Scholar
  4. Balahura, R. J., and Johnson, M. D. (1987) Outer-sphere dithionite reductions of metal complexes: Inorg. Chem. 26, 3860.CrossRefGoogle Scholar
  5. Baumgartner, E., Blesa, M. A., Marinovich, H. A., and Maroto, A. J. G. (1983) Heterogeneous electron transfer as a pathway in the dissolution of magnetite in oxalic acid solutions: Inorg. Chem. 22, 2224.CrossRefGoogle Scholar
  6. Blesa, M. A., and Maroto, A. J. G. (1986) Dissolution of metal oxides: J. Chim. Phys. 83, 757–764.CrossRefGoogle Scholar
  7. Blesa, M. A., Regazzoni, A. E., and Maroto, A. J. G. (1988) Reactions of metal oxides with aqueous solutions: Mater. Sci. Forum 29, 31–98.CrossRefGoogle Scholar
  8. Blesa, M. A., Regazzoni, A. E., and Morando, P. J. (1992a) Chemical Dissolution of Metal Oxides: CRC Press, Boca Raton, Florida, in press.Google Scholar
  9. Blesa, M. A., Regazzoni, A. E., and Stumm, W. (1992b) Surface Complexes as Reactive Species in Metal Oxide Dissolution, unpublished.Google Scholar
  10. Blesa, M. A., Borghi, E. B., Maroto, A. J. G., and Regazzoni, A. E. (1984) Adsorption of EDTA and iron-EDTA complexes on magnetite and the mechanism of dissolution of magnetite by EDTA: J. Colloid Interface Sci. 98, 295–305.Google Scholar
  11. Blesa, M. A., Marinovich, H. A., Baumgartner, E. C., and Maroto, A. J. G. (1987) Mechanism of dissolution of magnetite by oxalic acid-ferrous ion solutions: Inorg. Chem. 26, 3713–3717.CrossRefGoogle Scholar
  12. Borggaard, O. K. (1991) Effects of phosphate on iron oxide dissolution in EDTA and oxalate: Clays & Clay Minerals 39, 324–327.CrossRefGoogle Scholar
  13. Borghi, E. B., Morando, P. J., and Blesa, M. A. (1991) The dissolution of magnetite by mercaptocarboxylic acids: Langmuirl, 1652–1659.Google Scholar
  14. Borghi, E. B., Regazzoni, A. E., Maroto, A. J. G., and Blesa, M. A. (1989) Reductive dissolution of magnetite by solutions containing EDTA and Fe(II): J. Colloid Interface Sci. 130,299-310.Google Scholar
  15. Bowden, J. W., Nagarajah, N. J., Barrow, N. J., Posner, A. M., and Quirk, J. P. (1980) Describing the adsorption of phosphate, citrate, and selenite on a variable-charge mineral surface: Aust. J. Soil Res. 18, 49–60.CrossRefGoogle Scholar
  16. Brown, W. E., Dollimore, D., and Galwey, A. K. (1980) Reactions in the Solid State. Comprehensive Chemical Kinetics, Vol. 22, C. H. Bamford and C. F. H. Tipper, eds., Elsevier, Amsterdam.Google Scholar
  17. Bruyère, V. I. E., and Blesa, M. A. (1985) Acidic and reductive dissolution of magnetite in aqueous sulfuric acid: J. Electroanal. Chem. 182, 141–156.CrossRefGoogle Scholar
  18. Cornell, R. M., Posner, A. M., and Quirk, J. P. (1974) Crystal morphology and the dissolution geothite: J. Inorg. Nucl. Chem. 36, 1937.Google Scholar
  19. Cornell, R. M., Posner, A. M., and Quirk, J. P. (1976) Kinetics and mechanism of the acid dissolution of goethite (α-FeOOH): J. Inorg. Nucl. Chem. 38, 563–567.CrossRefGoogle Scholar
  20. Davis, A. D., James, R. O., and Leckie, J. O. (1978) Surface ionization and complexation at the oxide/water interface. I. Computation of electrical double layer properties in simple electrolytes: J. Colloid Interface Sci. 63, 480.CrossRefGoogle Scholar
  21. Deb, V. C. (1950) The estimations of free iron oxide in soils and clays and their removal: J. Soil Sci. 1, 212–220.CrossRefGoogle Scholar
  22. De Poy, P. E., and Mason, D. M. (1975) Periodicity in chemically reacting systems: Model of the kinetic of the decomposition of sodium dithionite: Faraday Symp. Chem. Soc. 9, 47–54.Google Scholar
  23. dos Santos Afonso, M., and Stumm, W. (1992) The Reductive Dissolution of Iron (III)(Hydr)oxides by Hydrogen Sulfide: to be published.CrossRefGoogle Scholar
  24. dos Santos Afonso, M., Morando, P. J., Blesa, M. A., Banwart, S., and Stumm, W. (1990) The reductive dissolution of iron oxides by ascorbate: J. Colloid Interface Sci. 138, 74–82.CrossRefGoogle Scholar
  25. Dzombak, D. A., and Morel, F. M. M. (1990) Surface Complexation Modelling. Hydrous Ferric Oxide: Wiley, New York.Google Scholar
  26. Gorichev, I. G., and Kipriyanov, N. A. (1981) Kinetics of the dissolution of oxide phases in acids: Russian J. Phys. Chem. 55, 1558–1568.Google Scholar
  27. Hidalgo, M. del V., Katz, N. E., Maroto, A. J. G., and Blesa, M. A. (1988) The dissolution of magnetite by nitrilotriacetatoferrate(II): J. Chem. Soc. Faraday Trans. I 84, 9–18.CrossRefGoogle Scholar
  28. Hiemstra, T., de Wit, J. C. M., and van Riemsdijk, W. H. (1989) Multisite proton adsorption modelling at the solid/solution interface of (hydr)oxides: A new approach. II. Application to various important (hydr)oxides: J. Colloid Interface Sci. 133, 105–117.CrossRefGoogle Scholar
  29. Hingston, F. J., Posner, A. M., and Quirk, J. P. (1972) Anion adsorption by goethite and gibbsite. I. The role of the proton in determining adsorption envelopes: J. Soil Sci. 23, 177.Google Scholar
  30. Hsu, P. H. (1967) Determination of iron with thiocyanate: Soil Sci. Soc. Am. Proc. 31, 353–355.CrossRefGoogle Scholar
  31. James, R. O., Stiglich, P. J., and Healy, T. W. (1975) Analysis of models of adsorption of metal ions at oxide water interface: Disc. Faraday Soc. 59, 142.Google Scholar
  32. Lambeth, D. O., and Palmer, G. (1973) The kinetics and mechanism of reduction of electron transfer proteins and other compounds of biological interest by dithionite: J. Biol. Chem. 248, 6095.Google Scholar
  33. Litter, M. I., Baumgartner, E. C., Urrutia, G. A., and Blesa, M. A. (1991) Photodissolution of iron oxides III: The interplay of photochemical and thermal processes in mag-hemite/carboxylic acid systems: Environmental Sci. Techn. 25, 1907–1913.CrossRefGoogle Scholar
  34. Mc Keague, J. A., and Day, J. H. (1966) Dithionite and oxalate-extractable Fe and Al as acids in differentiating various classes of soils: Can. J. Soil Sci. 46, 13–22.CrossRefGoogle Scholar
  35. Mehra, O. P., and Jackson, M. L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate: Clays and Clay Minerals, Proc. 7th Natl. Conf., Ada Swineford, ed., Pergamon Press, New York, pp. 317–327.Google Scholar
  36. Regazzoni, A. E., Urrutia, G. A., Blesa, M. A., and Maroto, A. J. G. (1981) Some observations on the composition and morphology of synthetic magnetites obtained by different routes: J. Inorg. Nuc. Chem. 43, 1489–1493.CrossRefGoogle Scholar
  37. Rinker, R. G., Lynn, S., Mason, D. M., and Corcoran, W. H. (1965) Kinetics and mechanism of the thermal decomposition of sodium dithionite in aqueous solution: Ind. Eng. Chem. Fund. 4, 282–288.CrossRefGoogle Scholar
  38. Rochester, C. H., and Topham, S. A. (1979) Infrared study of surface hydroxyl groups on goethite: J. C. S. Faraday I 75, 591–602.CrossRefGoogle Scholar
  39. Rueda, E. H. (1988) Procesos de adsorción y disolución en la interfaz goetita/solución acuosa: Ph.D. thesis, Universidad Nacional del Sur (Bahía Bianca).Google Scholar
  40. Rueda, E. H., Grassi, R. L., and Blesa, M. A. (1985) Adsorption and dissolution in the system goethite/aqueous EDTA: J. Colloid Interface Sci. 106, 243–246.CrossRefGoogle Scholar
  41. Russell, J. D., Parfitt, R. L., Fraser, A. R., and Farmer, V. C. (1974) Surface structures of gibbsite, goethite, and phos-phated goethite: Nature 248, 220–221.CrossRefGoogle Scholar
  42. Ryan, J. N., and Gschwend, P. M. (1991) Extraction of iron oxides from sediments using reductive dissolution by ti-tanium(III): Clays and Clay Minerals, 39, 509–518.CrossRefGoogle Scholar
  43. Segal, M. G., and Williams, W. J. (1986) Kinetics of metal oxide dissolution: J. Chem. Soc. Faraday Trans. I 82, 3245.CrossRefGoogle Scholar
  44. Tamaura, Y., Ito, K., and Katsura, T. (1983) Transformation of γ-FeO(OH) to Fe3O4 by adsorption of iron(II) iron on γ-FeO(OH): J. Chem. Soc. Dalton Trans. 189–194.Google Scholar
  45. Torrent, J., Schwertmann, U., and Barron, V. (1987) The reductive dissolution of synthetic goethite and hematite in dithionite: Clay Miner. 22, 329–337.CrossRefGoogle Scholar
  46. Torres, R., Blesa, M. A., and Matijevic, E. (1990) Interactions of metal hydrous oxides with chelating agents. IX. Reductive dissolution of hematite and magnetite by ami-nocarboxylic acids: J. Colloid Interface Sci. 134, 475–485.CrossRefGoogle Scholar
  47. Tronc, E., Jolivet, J. P., and Massart, R. (1982) Defect spinel structure in iron oxide colloids: Mat. Res. Bull. 17, 1365–1369.CrossRefGoogle Scholar
  48. Valverde, N. (1976) Investigations on the rate of dissolution of metal oxides in acidic solutions with additions of redox couples and complexing agents: Ber. Bunsenges Physik. Chem. 80, 333–340.CrossRefGoogle Scholar
  49. Wayman, M., and Lern, W. J. (1970) Decomposition of aqueous dithionite. II. Reaction mechanism for the decomposition of aqueous sodium dithionite: Can. J. Chem. 48, 782–787.CrossRefGoogle Scholar
  50. Wieland, E., Wehrli, B., and Stumm, W. (1988) The coordination chemistry of weathering: III. A generalization on the dissolution rates of minerals: Geochim. Cosmochim. Acta 52, 1969–1981.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1992

Authors and Affiliations

  • Elsa H. Rueda
    • 1
  • María C. Ballesteros
    • 1
  • Reynaldo L. Grassi
    • 1
  • Miguel A. Blesa
    • 2
  1. 1.Departamento de Química e Ingeniería QuímicaUniversidad Nacional del SurBahía BlancaArgentina
  2. 2.Departamento Química de ReactoresComisión Nacional de Energía AtómicaBuenos AiresArgentina

Personalised recommendations