Advertisement

Clays and Clay Minerals

, Volume 40, Issue 5, pp 567–574 | Cite as

Alkali Cation Selectivity and Surface Charge of 2:1 Clay Minerals

  • Shihe Xu
  • James B. Harsh
Article

Abstract

A critical demand in environmental modeling and a desirable but elusive goal of research on the ion exchange properties of the charged solid surface has been to determine the selectivity coefficient from fundamental properties of the ions and surface. We developed a Hard and Soft Acid and Base (HSAB) Model to describe exchangeable cation selectivity on solid surfaces. Our previous work has shown that the model quantitatively describes alkali cation exchange on clay minerals in terms of the absolute electronegativity and softness of the exchangeable cations and two fitting parameters: α and β. This study was conducted to determine the relationship between α and β and surface charge characteristics of 2:1 clays. The layer charge and cation selectivity of seven smectites and one vermiculite were used. The regression of log Kvo against four combinations of charge properties was performed and the appropriate relationship between α, β, and surface charge was selected based on both statistical criteria (R2) and their consistency with the assumptions of the HSAB model. The selected model was then cross-validated using separate cation exchange data from the literature. It was found that α and β are linearly related to the amount of charge arising from mineral tetrahedral and octahedral sites, respectively. These results make it possible to predict the alkali cation selectivity of 2:1 clay minerals from their chemical composition data and the alkali cation properties.

Key Words

Hard/soft acid/base model Ion exchange Isomorphic substitution Layer charge Lewis acid Lewis base Smectite Surface complexation Vermiculite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames Jr., L. L., Sand, L. B., and Goldich, S. S. (1958) A contribution on the Hector, California, bentonite deposit: Econ. Geol. 53, 22–37.CrossRefGoogle Scholar
  2. Brindley, G. W. (1980) Intracrystalline swelling of mont-morillonites in water-dimethylsulfoxide systems: Clays & Clay Minerals 28, 369–372.CrossRefGoogle Scholar
  3. Brindley, G. W., and Ertem, G. (1971) Preparation and solvation properties of some variable charge montmoril-lonites: Clays & Clay Minerals 19, 399–404.CrossRefGoogle Scholar
  4. Calvet, R., and Prost, R. (1971) Cation migration into empty octahedral sites and surface properties of clays: Clays & Clay Minerals 19, 175–186.CrossRefGoogle Scholar
  5. Cariati, F., Erre, L., Micera, G., Piu, P., and Gessa, C. (1983) Effects of layer charge on the near-infrared spectra of water molecules in smectites and vermiculites: Clays & Clay Minerals 31, 447–449.CrossRefGoogle Scholar
  6. Cicel, B., and Machajdik, D. (1981) Potassium and ammonium treated montmorillonites. I: Interstratified structures with ethylene glycol and water: Clays & Clay Minerals 29, 40–46.CrossRefGoogle Scholar
  7. Cremers, A., and Thomas, C. T. (1968) The thermodynamics of sodium-cesium exchange on Camp Berteau mont-morillonite: An almost ideal case: Isr. J. Chem. 6, 949–957.CrossRefGoogle Scholar
  8. Doner, H. E., and Mortland, M. M. (1971) Charge location as a factor in the dehydration of 2:1 clay minerals: Soil Sci. Soc. Am. Proc. 35, 360–362.CrossRefGoogle Scholar
  9. Durand, B., Pelet, R., and Fripiat, J. J. (1972) Alkylammonium decomposition on montmorillonite surfaces in an inert atmosphere: Clays & Clay Minerals 20, 21–35.CrossRefGoogle Scholar
  10. Earley, J. W., Osthaus, B. B., and Milne, I. H. (1953) Purification and properties of montmorillonite: Amer. Miner. 38, 707–724.Google Scholar
  11. Eberl, D. D. (1980) Alkali cation selectivity and fixation by clay minerals: Clays & Clay Minerals 28, 161–172.CrossRefGoogle Scholar
  12. Eberl, D. D., Srodon, J., and Northrop, H. R. (1986) Potassium fixation in smectite by wetting and drying: in Geo-chemical Processes at Mineral Surfaces, J. Davis and K. F. Hayes, eds., American Chemical Society, Washington D. C., 296–326.Google Scholar
  13. Eliason, J. R. (1966) Montmorillonite exchange equilibria with strontium-sodium-cesium: Amer. Miner. 51, 324–335.Google Scholar
  14. Farmer, V. C., and Russell, J. D. (1971) Interlayer complexes in layer silicates: The structure of water in lamellar ionic solutions: Trans. Faraday Soc. 67, 2737–2749.CrossRefGoogle Scholar
  15. Faucher, J. A., and Thomas, H. C. (1954) Adsorption studies on clay minerals. IV: The system of montmorillonite-cesium-potassium: J. Chem. Phys. 22, 258–261.CrossRefGoogle Scholar
  16. Foster, M. D. (1963) Interpretation of the composition of vermiculites and hydrobiotites: Clays & Clay Minerals, Proc. 10th Clay Conf., Pergamon Press, New York, 70–89.Google Scholar
  17. Gast, R. G. (1972) Alkali metal cation exchange on Chambers montmorillonite: Soil Sci. Soc. Am. Proc. 36, 14–19.CrossRefGoogle Scholar
  18. Gast, R. G., and Klobe, W. D. (1971) Sodium-lithium exchange equilibria on vermiculite at 25° and 50°C: Clays & Clay Minerals 19, 311–319.CrossRefGoogle Scholar
  19. Grim, R. E., and Guven, N. (1978) Bentonites: Geology, Mineralogy, Properties and Uses (Developments in Sedi-mentology 24): Elsevier Press, New York.Google Scholar
  20. Hallmark, C. T., Wilding, L. P., and Smeck, N. E. (1982) Silicon: in Methods of Soil Analysis. Part 2—Chemical and Microbiological Properties, A. L. Page, R. H. Miller, and D. R. Keeney, eds., American Society of Agronomy/Soil Science of America Publisher, Madison, Wisconsin, 263–274.Google Scholar
  21. Hofmann, U., and Kiemen, R. (1950) Verlust der Austauschfähigkeit von Lithiumionen an Bentonit durch Erhitzung: Z. Anorg. Allg. Chem. 161, 95–99.CrossRefGoogle Scholar
  22. Jaynes, W. F., and Bigham, J. M. (1987) Charge reduction, octahedral charge, and lithium retention in heated, Li-saturated smectites: Clays & Clay Minerals 35, 440–448.CrossRefGoogle Scholar
  23. Jackson, M. L. (1973) Soil Chemical Analysis—Advanced Course: Published by author, University of Wisconsin, Madison, Wisconsin.Google Scholar
  24. Kittrick, J. A. (1973) Mica-derived vermiculites as unstable intermediates: Clays & Clay Minerals 21, 479–488.CrossRefGoogle Scholar
  25. Krishnamoorthy, C., and Overstreet, R. (1949) An experimental evaluation of ion-exchange relationships: Soil Sci. 69, 41–53.CrossRefGoogle Scholar
  26. Kunishi, H. M., and Heald, W. R. (1968) Rubidium-sodium exchange on kaolinite and bentonite: Soil Sci. Soc. Am. Proc. 32, 201–204.CrossRefGoogle Scholar
  27. Lagaly, G. (1982) Layer charge heterogeneity in vermiculite: Clays & Clay Minerals 30, 215–222.CrossRefGoogle Scholar
  28. Laird, D. A. (1987) Layer charge and crystalline swelling of expanding 2:1 phyllosilicates: Ph.D. thesis, Iowa State University, Ames, Iowa (Diss. Abstr. 87-16784).Google Scholar
  29. Laudelout, H., van Bladel, R., Bolt, G. H., and Page, A. L. (1968) Thermodynamics of heterovalent cation exchange reactions in a montmorillonite clay: Trans. Faraday Soc. 84, 1477–1488.CrossRefGoogle Scholar
  30. Lim, C. H., and Jackson, L. M. (1982) Dissolution for total elemental analysis: in Methods of Soil Analysis. Part 2— Chemical and Microbiological Properties, A. L. Page, R. H. Miller, and D. R. Keeney, eds., American Society of Agronomy/Soil Science of America Publisher, Madison, Wisconsin, 1–12.Google Scholar
  31. Maes, A., and Cremers, A. (1977) Charge density effects in ion exchange. Part 1: Heterovalent exchange equilibria: J. Chem. Soc. Faraday Trans. 73, 1807–1814.CrossRefGoogle Scholar
  32. Maes, A., and Cremers, A. (1978) Charge density effects in ion exchange. Part 2: Homovalent exchange equilibria: J. Chem. Soc. Faraday Trans. 74, 1234–1241.CrossRefGoogle Scholar
  33. Marshall, C. E., and Garcia, G. (1959) Exchange equilibria in a carboxylic resin and in attapulgite clay: J. Phys. Chem. 63, 1663–1666.CrossRefGoogle Scholar
  34. Martin, H., and Laudelout, H. (1963) Thermodynamique de l’echange des cations alcalins dans les argiles: J. Chim. Phys. 60, 1086–1099.CrossRefGoogle Scholar
  35. Mattigod, S. V., and Sposito, G. (1978) Improved method for estimating the standard free energies of formation (ΔGfo,29815) of smectites: Geochim. Cosmochim. Acta 42, 1753–1762.CrossRefGoogle Scholar
  36. Merriam, C. N., and Thomas, H. C. (1956) Adsorption studies on clay minerals. VI. Alkali ions on attapulgite: J. Chem. Phys. 24, 993–995.CrossRefGoogle Scholar
  37. Misono, M., Ochiai, E., Saito, Y., and Yoneda, Y. (1967) A new dual scale for the strength of the Lewis acids and bases with the evaluation of their softness: J. Inorg. Nucl. Chem. 29, 2685–2691.CrossRefGoogle Scholar
  38. Norrish, K. (1973) Factors in the weathering of mica to vermiculite: in Proc. of the Int. Clay Conf., Madrid, Spain, June 1972, J. M. Serratosa et al., eds., Div. de Ciencas, CSIA, Madrid, 417–432.Google Scholar
  39. Pearson, R. G. (1963) Hard and soft acids and bases: J. Amer. Chem. Soc. 85, 3533–3539.CrossRefGoogle Scholar
  40. Pearson, R. G. (1968) Hard and soft acids and bases, HSAB, part 1: Fundamental principles: J. Chem. Ed. 45, 581–587.CrossRefGoogle Scholar
  41. Pearson, R. G. (1987) Recent advances in the concept of hard and soft acids and bases: J. Chem. Ed. 64, 561–567.CrossRefGoogle Scholar
  42. Schultz, L. G. (1969) Lithium and potassium absorption, dehydroxylation temperature, and structural water content of aluminous smectites: Clays & Clay Minerals 17, 115–149.CrossRefGoogle Scholar
  43. Senkayi, A. L., Dixon, L. B., Hossner, L. R., and Kippen-berger, L. A. (1985) Layer charge evaluation of expandable soil clays by an alkylammonium method: Soil Sci. Soc. Amer. J. 49, 1054–1060.CrossRefGoogle Scholar
  44. Shainberg, I., Alperovitch, N. I., and Keren, R. (1987) Charge density and Na-K-Ca exchange on smectites: Clays & Clay Minerals 35, 68–73.CrossRefGoogle Scholar
  45. Sherry, H. S. (1979) Ion-exchange properties of the natural zeolite erionite: Clays & Clay Minerals 27, 231–237.CrossRefGoogle Scholar
  46. Shirozu, H., and Bailey, S. W. (1966) Crystal structure of a two-layer Mg-vermiculite: Amer. Mineral. 51, 1124–1143.Google Scholar
  47. Sposito, G. (1984) The Surface Chemistry of Soils: Oxford Press, New York, 234 pp.Google Scholar
  48. Sposito, G., Holtzclaw, K. M., Johnston, C. T., and LeVesque, C. S. (1981) Thermodynamics of sodium-copper exchange on Wyoming bentonite at 298 K: Soil Sci. Soc. Amer. J. 45, 1079–1084.CrossRefGoogle Scholar
  49. Sterte, J., and Shabtai, J. (1987) Cross-linked smectites. V: Synthesis and properties of hydroxy-silicoaluminum mont-morillonites and fluorhectorites: Clays & Clay Minerals 35, 429–439.CrossRefGoogle Scholar
  50. Stucki, J. W. (1981) The quantitative assay of minerals for Fe2+ and Fe3+ using 1, 10-phenanthroline: 2. A photochemical method: Soil Sci. Soc. Amer. J. 45, 638–641.CrossRefGoogle Scholar
  51. Tabikh, A.A., Barshad, I., and Overstreet, R. (1960) Cation-exchange hysteresis in clay minerals: Soil Sci. 90, 219–226.CrossRefGoogle Scholar
  52. Van Olphen, H., and Fripiat, J. J. (1979) Data Handbook for Clay Materials and Other Non-metallic Minerals: Pergamon Press, New York.Google Scholar
  53. Weaver, C. E., and Pollard, L. D. (1973) Chemistry of Clay Minerals; Elsevier Sci. Publ. Co., Amsterdam.Google Scholar
  54. Weir, A. H. (1965) Clay potassium retention in montmo-rillonite: Clay Miner. 6, 17–22.CrossRefGoogle Scholar
  55. Xu, S., and Harsh, J. B. (1990a) Monovalent cation selectivity quantitatively modeled according to hard/soft acid/ base theory: Soil Sci. Soc. Amer. J. 54, 357–363.CrossRefGoogle Scholar
  56. Xu, S., and Harsh, J. B. (1990b) Hard and soft acid-base model verified for monovalent cation selectivity: Soil Sci. Soc. Amer. J. 54, 1596–1601.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1992

Authors and Affiliations

  • Shihe Xu
    • 1
  • James B. Harsh
    • 1
  1. 1.Department of Crop and Soil SciencesWashington State UniversityPullmanUSA

Personalised recommendations