Advertisement

Clays and Clay Minerals

, Volume 40, Issue 5, pp 561–566 | Cite as

The Interlayer Collapse During Dehydration of Synthetic Na0.7-Beidellite: A 23Na Solid-State Magic-Angle Spinning NMR Study

  • J. Theo Kloprogge
  • J. Ben
  • H. Jansen
  • Roelof D. Schuiling
  • John W. Geus
Article

Abstract

The dehydration and migration of the interlayer cation of the synthetic beidellite Na0.7Al4.7Si7.3O20-(OH)4·nH2O, were studied with solid-state 23Na and 27Al MAS-NMR, heating stage XRD, and thermogravimetric analyses (TGA, DTA). The 23Na MAS-NMR of Na-beidellite at 25°C displays a chemical shift of 0.2 ppm, which indicates a configuration comparable with that of Na+ in solution. Total dehydration proceeds reversibly in two temperature ranges. Four water molecules per Na+ are gradually removed from 25° to 85°C. As a result, the basal spacing decreases from 12.54 Å to 9.98 Å and the Na+ surrounded by the two remaining water molecules is relocated in the hexagonal cavities of the tetrahedral sheet. The chemical shift of 1.5 ppm exhibited after the first dehydration stage illustrates the increased influence of the tetrahedral sheet. The high local symmetry is maintained throughout the entire first dehydration stage. During the second dehydration, which proceeds in a narrow temperature range around 400°C, the remaining two water molecules are removed reversibly without any change of the basal spacing.

Key Words

Beidellite Dehydration Interlayer collapse 23Na MAS-NMR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akitt, J. W. (1989) Multinuclear studies of aluminum compounds: Progr. NMR Spectr. 21, 1–149.CrossRefGoogle Scholar
  2. Bank, S., Bank, J., and Ellis, P. D. (1989) Solid-state 113Cd nuclear magnetic resonance study of exchanged montmorillonite: J. Phys. Chem. 93, 4847–4855.CrossRefGoogle Scholar
  3. Chu, P. J., Gerstein, B. C., Nunan, J., and Klier, K. (1987) A study by solid-state NMR of 133Cs and 1H of a hydrated and dehydrated cesium mordenite: J. Phys. Chem. 91, 3588–3592.CrossRefGoogle Scholar
  4. Engelhardt, G., and Michel, D. (1987) High-resolution Solid-state NMR of Silicates and Zeolites: Wiley, New York, 485 pp.Google Scholar
  5. Ghose, S., and Tsang, T. (1973) Structural dependence of quadrupole coupling constant e2qQ/h for 27A1 and crystal field parameter D for Fe3+ in aluminosilicates: Amer. Mineral. 58, 748–755.Google Scholar
  6. Güven, N. (1988) Smectites: in Hydrous Phyllosilicates (Exclusive of Micas), S. W. Bailey, ed., Reviews in Mineralogy 19, Mineralogical Society of America, Washington, D.C., 497–559.CrossRefGoogle Scholar
  7. Hamilton, D. L., and Henderson, C. M. B. (1968) Preparation of silicate compositions by a gelling method: Mineral. Mag. 36, 832–838.Google Scholar
  8. Janssen, R., Dols, P. P. M. A., Tijink, G. A. H., and Veeman, W. S. (1989a) High temperature NMR of zeolites: in Zeolites: Facts, Figures, Future. Stud. Surf. Sci. and Catal. 49 A/B, P. A. Jacobs and R. A. van Santen, eds., Proc. 8th Int. Zeolite Conf. Amsterdam 1989, Elsevier, Amsterdam, 609–614.Google Scholar
  9. Janssen, R., Tijink, G. A. H., Veeman, W. S., Maesen, T. L. M., and van Lent, J. F. (1989b) High temperature NMR study of zeolite Na-A: Detection of a phase transition: J. Phys. Chem. 93, 899–904.CrossRefGoogle Scholar
  10. Kawano, M., and Tomita, K. (1991) X-ray powder diffraction studies on the rehydration properties of beidellite: Clays & Clay Minerals 39, 77–83.CrossRefGoogle Scholar
  11. Kentgens, A. P. M., Scholle, K. F. M. G. J., and Veeman, W. S. (1983) Effect of hydration on the local symmetry around aluminum in ZSM-5 zeolites studied by aluminum-27 nuclear magnetic resonance: J. Phys. Chem. 87, 4357–4360.CrossRefGoogle Scholar
  12. Kirkpatrick, R. J. (1988) MAS NMR spectroscopy of minerals and glasses: in Spectroscopic Methods in Mineralogy and Geology, F. C. Hawthorne, ed., Reviews in Mineralogy 18, Mineralogical Society of America, Washington, D. C., 341–403.CrossRefGoogle Scholar
  13. Kirkpatrick, R. J., Kinsey, R. A., Smith, K. A., Henderson, D. M., and Oldfield, E. (1985) High resolution solid-state sodium-23, aluminum-27, and silicon-29 nuclear magnetic resonance spectroscopic reconnaissance of alkali and pla-gioclase feldspars: Amer. Mineral. 70, 106–123.Google Scholar
  14. Kloprogge, J. T., van der Eerden, A. M. J., Jansen, J. B. H., and Geus, J. W. (1990a) Hydrothermal synthesis of Na-beidellite: Geologie en Mijnbouw 69, 351–357.Google Scholar
  15. Kloprogge, J. T., Jansen, J. B. H., and Geus, J. W. (1990b) Characterization of synthetic Na-beidellite: Clays & Clay Minerals 38, 409–414.CrossRefGoogle Scholar
  16. Koster van Groos, A. F., and Guggenheim, S. (1984) The effect of pressure on the dehydration reaction of interlayer water in Na-montmorillonite (SWy-1): Amer. Mineral. 69, 872–879.Google Scholar
  17. Koster van Groos, A. F., and Guggenheim, S. (1986) Dehydration of K-exchanged montmorillonite at elevated temperatures and pressures: Clays & Clay Minerals 34, 281–286.CrossRefGoogle Scholar
  18. Koster van Groos, A. F, and Guggenheim, S. (1987) Dehydration of a Ca- and a Mg-exchanged montmorillonite (SWy-1) at elevated pressures: Amer. Mineral. 72, 292–298.Google Scholar
  19. Kunwar, A. C., Thompson, A. R., Gutowsky, H. S., and Old-field, E. (1984) Solid state aluminum-27 NMR studies of tridecameric Al-oxo-hydroxy clusters in basic aluminum selenate, sulfate, and the mineral zunyite: J. Magn. Reson. 60, 467–472.Google Scholar
  20. Lin, C.-Y., and Bailey, S. W. (1984) The crystal structure of paragonite-2M1: Amer. Mineral. 69, 122–127.Google Scholar
  21. Loewenstein, W. (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates: Amer. Mineral. 57, 1089–1108.Google Scholar
  22. Luca, V., Cardile, C.M., and Meinhold, R.H. (1989) High-resolution multinuclear study of cation migration in montmorillonite: Clay Miner. 24, 115–119.CrossRefGoogle Scholar
  23. Meadows, M. D., Smith, K. A., Kinsey, R. A., Rothgeb, T. M., Skarjune, R. P., and Oldfield, E. (1982) High-resolution solid-state NMR of quadrupolar nuclei: Proc. Nat. Acad. Sci. USA 79, 1351–1355.CrossRefGoogle Scholar
  24. Oestrike, R., Yang, W.-H., Kirkpatrick, R. J., Hervig, R. L., Navrotsky, A., and Montez, B. (1987) High resolution 23Na, 27A1, and 29Si NMR spectroscopy of framework alu-minosilicate glasses: Geochim. Cosmochim. Acta 51, 2199–2209.CrossRefGoogle Scholar
  25. Plee, D., Borg, F., Gatineau, L., and Fripiat, J. J. (1985) High-resolution solid-state 27A1 and 29Si nuclear magnetic resonance study of pillared clays: J. Am. Chem. Soc. 107, 2362–2369.CrossRefGoogle Scholar
  26. Shannon, R. D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides: Acta Crystallogr. A32, 751–767.CrossRefGoogle Scholar
  27. Sidorenko, O. V., Zvyagin, B. B., and Soboleva, S. V. (1977a) Refinement of the crystal structure of 2M1 paragonite by the method of high-voltage electron diffraction: Sov. Phys./Amer. Inst. Phys. Crystallography 22, 554–556 (translated from Kristallografija 22, 971–975, 1977).Google Scholar
  28. Sidorenko, O. V., Zvyagin, B. B., and Soboleva, S. V. (1977b) The crystal structure of 3T paragonite: Sov. Phys./Amer. Inst. Phys. Crystallography 22, 557–560 (translated from Kristallografija 22, 976–981, 1977).Google Scholar
  29. Touret, O., Pons, C. H., Tessier, D., and Tardy, Y. (1990) Etude de repartition de l’eau dans les argiles Mg2+ aus fortes teneurs en eau: Clay Miner. 25, 217–233.CrossRefGoogle Scholar
  30. Tuttle, O. F. (1949) Two pressure vessels for silicate-water studies: Geol. Soc. Amer. Bull. 60, 1727–1729.CrossRefGoogle Scholar
  31. Weiss, C. A., Kirkpatrick, R. J., and Altaner, S. P. (1990a) The structural environment of cations adsorbed onto clays: l33Cs variable-temperature MAS NMR spectroscopic study of hectorite: Geochim. Cosmochim. Acta 54, 1655–1669.CrossRefGoogle Scholar
  32. Weiss, C. A., Kirkpatrick, R. J., and Altaner, S. P. (1990b) Variations in interlayer cation sites of clay minerals as studied by 133Cs MAS nuclear magnetic resonance spectroscopy: Amer. Mineral. 75, 970–982.Google Scholar
  33. Woessner, D. E. (1989) Characterization of clay minerals by 27Al nuclear magnetic resonance spectroscopy: Amer. Mineral. 74, 203–215.Google Scholar
  34. Yang, W.-H., Kirkpatrick, R. J., and Henderson, D. M. (1986) High resolution 29Si, 27A1, and 23Na NMR spectroscopic study of Al−Si disordering in annealed albite and oligoclase: Amer. Mineral. 71, 712–726.Google Scholar

Copyright information

© The Clay Minerals Society 1992

Authors and Affiliations

  • J. Theo Kloprogge
    • 1
  • J. Ben
    • 1
  • H. Jansen
    • 1
  • Roelof D. Schuiling
    • 1
  • John W. Geus
    • 2
  1. 1.Department of Geochemistry, Institute for Earth SciencesUniversity of UtrechtUtrechtThe Netherlands
  2. 2.Department of Inorganic ChemistryUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations