Advertisement

Clays and Clay Minerals

, Volume 40, Issue 5, pp 531–539 | Cite as

Influence of Fe(II) on the Formation of the Spinel Iron Oxide in Alkaline Medium

  • J. P. Jolivet
  • P. Belleville
  • E. Tronc
  • J. Livage
Article

Abstract

Fe(II) and Fe(III) in various proportions were coprecipitated by NH3 at pH ≈ 11. The Fe(II)/Fe(III) ratio (x) was varied from 0.10 to 0.50. After stabilization by aging at pH ≃ 8 in anaerobic conditions, hydrous precipitates were characterized by electron microscopy, Mössbauer spectroscopy, and kinetics of dissolution in acidic medium. At any x value, all stable products exhibited the structure of (oxidized) magnetite. For x ≤ 0.30, two distinct species were coexisting: the one (“m”) was made up of ca. 4nm-sized particles with a low Fe(II) content (Fe(II)/Fe(III) ≈ 0.07), and the other (“M”) consisted of particles of larger, more or less distributed sizes, and composition Fe(II)/Fe(III) ≈ 0.33; “M” increased relative amount with increasing x. For x ≥ 0.35, “M” was the only constituent and its Fe(II)/Fe(III) ratio was equal to x. “M” is identified with (nonstoichiometric) magnetite, whereas “m” is likely to be an oxyhydroxide. Mechanisms of formation are discussed, and a phase diagram is proposed which schematizes the evolution of the coprecipitation products with x and with time. Addition of Fe(II) after the precipitation of Fe(III), instead of coprecipitation, yielded very similar results.

Key Words

Dissolution Ferrihydrite Maghemite Magnetite Mössbauer spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chukhrov, F. V., Zvyagin, B. B., Gorshkov, A. I., Yermilova, L.P., and Balashova, V.V. (1973) Ferrihydrite: Intl. Geol. Rev. 16, 1131–1143.CrossRefGoogle Scholar
  2. Coey, J. M. D., and Khalafalla, D. (1972) Superparamagnetic γ-Fe2O3: Phys. Stat. Sol. (a) 11, 229–241.CrossRefGoogle Scholar
  3. Cornell, R. M. (1988) The influence of some divalent cations on the transformation of ferrihydrite to more crystalline products: Clay Miner. 23, 329–332.CrossRefGoogle Scholar
  4. Cornell, R. M., and Giovanoli, R. (1987) Effect of manganese on the transformation of ferrihydrite into goethite and jacobsite in alkaline media: Clays & Clay Minerals 35, 11–20.CrossRefGoogle Scholar
  5. Cornell, R. M., and Giovanoli, R. (1988) The influence of copper on the transformation of ferrihydrite (5Fe2O3 9H2O) into crystalline products in alkaline media: Polyhedron 7, 385–391.CrossRefGoogle Scholar
  6. Daniels, J. M., and Rosencwaig, A. (1969) Mössbauer spectroscopy of stoichiometric and nonstoichiometric magnetite: J. Phys. Chem. Solids 30, 1561–1571.CrossRefGoogle Scholar
  7. De Bakker, P. M. A., De Grave, E., Vandenberghe, R. E., and Bowen, L. H. (1990) Mössbauer study of small-particle maghemite: Hyperf. Interac. 54, 493–498.CrossRefGoogle Scholar
  8. Eggleton, R. A., and Fitzpatrick, R.W. (1988) Newdataand a revised structural model for ferrihydrite: Clays & Clay Minerals 36, 111–124.CrossRefGoogle Scholar
  9. Fischer, W. R. (1973) Die Wirkung von zweiwertigem Eisen auf Lösung und Umwandlung von Eisen(III)-hydroxiden: in Pseudogley and Gley, E. Schlichting and U. Schwertmann, eds., Verlag Chemie, Trans. Comm. V and VI Int. Soc. Soil Sci., 37–44.Google Scholar
  10. Haneda, K., and Morrish, A. H. (1977) On the hyperfine field of γ-Fe2O3 small particles: Phys. Lett. 64A, 259–262.CrossRefGoogle Scholar
  11. Henry, M., Jolivet, J. P., and Livage, J. (1992) Aqueous chemistry of metal cations: Hydrolysis, condensation, and complexation: Structure and Bonding 77, 154–206.Google Scholar
  12. Jolivet, J. P., and Tronc, E. (1988) Interfacial electron transfer in colloidal spinel iron oxide. Conversion Fe3O4→γ-Fe2O3 in aqueous medium: J. Colloid Interface Sci. 125, 688–701.CrossRefGoogle Scholar
  13. Jolivet, J.P., Massart, R., and Fruchart, J.M. (1983) Synthèse et étude physicochimique de colloïdes magnétiques non surfactés en milieu aqueux: Nouv. J. Chim. 7, 325–331.Google Scholar
  14. Mann, S., Sparks, N. H. C., Couling, S. B., Larcombe, M. C., and Frankel, R. B. (1989) Crystallochemical characterization of magnetic spinels prepared from aqueous solution: J. Chem. Soc, Faraday Trans. 1 85, 3033–3044.CrossRefGoogle Scholar
  15. Misawa, T., Hashimoto, K., and Shimodaira, S. (1974) The mechanism of formation of iron oxides and oxyhydroxides in aqueous solutions at room temperature: Corrosion Sci. 14, 131–149.CrossRefGoogle Scholar
  16. Morup, S., Dumesic, J. A., and Topsøe, H. (1980) Magnetic microcrystals: in Applications of Mössbauer Spectroscopy, R. L. Cohen, ed., Academic Press, New York, 2, 1–53.Google Scholar
  17. Morup, S., Topsae, H., and Lipka, J. (1976) Modified theory for Mössbauer spectra of superparamagnetic particles: Application to Fe3O4: J. Physique 37, C6 287–290.Google Scholar
  18. Murad, E., Bowen, L. H., Long, G. J., and Quin, T. G. (1988) The influence of crystallinity on magnetic ordering in natural ferrihydrites: Clay Miner. 23, 161–173.CrossRefGoogle Scholar
  19. Murad, E., and Johnston, J. H. (1987) Iron oxides and oxyhydroxides: Mössbauer Spectroscopy Applied to Inorganic Chemistry, G. J. Long, ed., Plenum Press, New York, 2, 507–582.Google Scholar
  20. Murad, E., and Schwertmann, U. (1980) The Mössbauer spectrum of ferrihydrite and its relation to those of other iron oxides: Amer. Mineral. 65, 1044–1049.Google Scholar
  21. Ramdani, A., Steinmetz, J., Gleitzer, C., Coey, J. M. D., and Friedt, J. M. (1987) Perturbation de l’échange électronique rapide par les lacunes cationiques dans Fe3-xO4 (x < 0.09): J. Phys. Chem. Solids 48, 217–228.CrossRefGoogle Scholar
  22. Sawatzky, G. A., Van der Woude, F., and Morrish, A. H. (1969) Recoilless-fraction ratios for Fe57 in octahedral and tetrahedral sites of a spinel and a garnet: Phys. Rev. 183, 383–386.CrossRefGoogle Scholar
  23. Tamaura, Y., Buduan, P. V., and Katsura, T. (1981) Studies in the oxidation of iron (II) ion during formation of Fe3O4 and α-FeOOH by air oxidation of Fe(OH)2 suspensions: J. Chem. Soc. Dalton Trans. 1807–1811.Google Scholar
  24. Tamaura, Y., Ito, K., and Katsura, T. (1983) Transformation of γ-FeOOH to Fe3O4 by adsorption of Fe(II) ion on 7-FeOOH: J. Chem. Soc. Dalton Trans. 189–194.Google Scholar
  25. Tronc, E., and Bonnin, D. (1985) Magnetic coupling among spinel iron oxide microparticles by Mössbauer spectroscopy: J. Physique Lett. 46, L437–L443.CrossRefGoogle Scholar
  26. Tronc, E., Belleville, P., Jolivet, J. P., and Livage, J. (1992) Transformation of ferric hydroxide into spinel by Fe(II) adsorption: Langmuir 8, 313–319.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1992

Authors and Affiliations

  • J. P. Jolivet
    • 1
  • P. Belleville
    • 1
  • E. Tronc
    • 1
  • J. Livage
    • 1
  1. 1.Chimie de la Matière Condensée (CNRS URA 1466)Université Pierre et Marie CurieParis 05France

Personalised recommendations