Advertisement

Clays and Clay Minerals

, Volume 40, Issue 5, pp 501–514 | Cite as

Microstructures, Mixed Layering, and Polymorphism of Chlorite and Retrograde Berthierine in the Kidd Creek Massive Sulfide Deposit, Ontario

  • Wei-Teh Jiang
  • Donald R. Peacor
  • John F. Slack
Article

Abstract

Transmission electron microscopy (TEM) was utilized to determine the origins of berthierine and chlorite in the core of the footwall alteration zone of the Kidd Creek massive sulfide deposit, Ontario. TEM images show lamellar intergrowths of packets of berthierine, mixed-layer chlorite/berthierine, Fe-Mg chlorite, and relatively Fe-rich chlorite that contain dislocations, stacking faults, kink bands, and gliding along (001). Interstratification of packets of berthierine and chlorite with one to several tens of layers commonly is associated with terminations of a layer of chlorite by two layers of berthierine. Layers in adjacent domains of berthierine and chlorite are continuous across interfaces that transect their common {001} planes. High-strain zones that cut across cleavage planes, consisting of distorted layers and lens-shaped pores, are associated with stacking faults and gliding along cleavage planes in chlorite crystals. Similar features separate interstratified chlorite/berthierine of different structures and textures, implying development of such composite grains after deformation of chlorite. Electron diffraction patterns show that the chlorite is an ordered one- or two-layer polytype or a one-layer polytype with semi-random stacking, and that the berthierine is a one-layer polytype with semi-random stacking epitaxially intergrown with chlorite.

Coexisting chlorite and berthierine have nearly identical ranges of compositions, containing Si ≅ 5, Al ≅ 6, and Fe ≅ 6.5–8.5 pfu, and minor, variable Mg and Mn contents, in formulae normalized on the basis of 20 total cations. This implies polymorphism among Fe,Al-rich members of the serpentine and chlorite groups. In one of the samples, berthierine and mixed-layer chlorite/berthierine coexist with chlorite having two compositional ranges, including Fe-rich chlorite with a relatively wide range of Fe-Mg contents, and a dominant Fe-Mg chlorite. In another sample, compositionally homogeneous Fe-rich chlorite is associated with berthierine and mixed-layer chlorite/berthierine; Fe-Mg chlorite was not detected.

The microstructural relations and the presence of coexisting polymorphs, complex mixed layering, heterogeneous polytypism, and wide ranges of mineral compositions are consistent with replacement of chlorite by berthierine under non-equilibrium retrograde conditions, in contrast to the generally assumed prograde origin for other berthierine occurrences.

Key Words

Berthierine Chlorite Massive sulfide deposit Microstructures Mixed layering Polymorphism Polytypism Transmission electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, J. H. and Peacor, D. R. (1985) Transmission electron microscopic study of diagenetic chlorite in Gulf Coast argillaceous sediments: Clays & Clay Minerals 33, 228–236.CrossRefGoogle Scholar
  2. Ahn, J. H. and Peacor, D. R. (1987) Kaolinization of biotite: TEM data and implications for an alteration mechanism: Amer. Mineral. 72, 353–356.Google Scholar
  3. Amouric, M., Gianetto, I., and Proust, D. (1988) 7, 10, and 14 Å mixed-layer phyllosilicates studied structurally by TEM in pelitic rocks of the Piemontese zone (Venezuela): Bull. Mineral. 111, 29–37.Google Scholar
  4. Bailey, S. W. (1984) Structure of layer silicates: in Crystal Structures of Clay Minerals and Their X-Ray Identification, G. W. Brindley and G. Brown, eds., The Mineralogical Society, London, 1–124.Google Scholar
  5. Bailey, S. W. (1988a) Structures and compositions of other trioctahedral 1:1 phyllosilicates: in Hydrous Phyllosilicates (Exclusive of Micas), S. W. Bailey, ed., Mineralogical Society of America, Reviews in Mineralogy 19, Washington, D.C., 169–188.CrossRefGoogle Scholar
  6. Bailey, S.W. (1988b) X-ray diffraction identification of the polytypes of mica, serpentine, and chlorite: Clays & Clay Minerals 36, 193–213.CrossRefGoogle Scholar
  7. Bailey, S. W. (1988c) Chlorites: Structures and crystal chemistry: in Hydrous Phyllosilicates (Exclusive of Micas), S. W. Bailey, ed., Mineralogical Society of America, Reviews in Mineralogy 19, Washington, D.C., 347–403.CrossRefGoogle Scholar
  8. Banfield, J. F. and Eggleton, R. A. (1988) Transmission electron microscope study of biotite weathering: Clays & Clay Minerals 36, 47–60.CrossRefGoogle Scholar
  9. Banfield, J. F., Karabinos, P., and Veblen, D. R. (1989) Transmission electron microscopy of chloritoid: Intergrowth with sheet silicates and reactions in metapelites: Amer. Mineral., 74 549–564.Google Scholar
  10. Barrie, C. T. and Davis, D. W. (1990) Timing of magmatism and deformation in the Kamiskotia-Kidd Creek area, western Abitibi subprovince, Canada: Precam. Research 46, 217–240.CrossRefGoogle Scholar
  11. Bhattacharyya, D. P. (1983) Origin of berthierine in ironstones: Clays & Clay Minerals 31, 173–182.CrossRefGoogle Scholar
  12. Bons, A.-J. (1988) Deformation of chlorite in naturally deformed low-grade rocks: Tectonophysics 154, 149–165.CrossRefGoogle Scholar
  13. Brindley, G. W. (1982) Chemical compositions of berthierines—A review: Clays & Clay Minerals 30, 153–155.CrossRefGoogle Scholar
  14. Brisbin, D., Kelly, V., and Cook, R. (1990) Kidd Creek mine: in Geology and Ore Deposits of the Timmins District, Ontario, J. A. Fyon and A. H. Green, eds., Eighth IAGOD Symposium, Field Trip Guidebook 6, Geol. Survey Canada Open File 2161, 66–76.Google Scholar
  15. Brown, B. E. and Bailey, S. W. (1962) Chlorite polytypism: I. Regular and semi-random one-layer structures: Amer. Mineral. 47, 819–850.Google Scholar
  16. Chamley, H. (1990) Clay Sedimentology: Springer-Verlag, New York, 623 pp.CrossRefGoogle Scholar
  17. Coad, P. R. (1985) Rhyolite geology at Kidd Creek—A progress report: Can. Inst. Mining Metall. Bull. 78, 70–83.Google Scholar
  18. Craig, J., Fitches, W. R., and Maltman, A. J. (1982) Chlo-rite-mica stacks in low-strain rocks from central Wales: Geol. Magazine 119, 243–256.CrossRefGoogle Scholar
  19. Curtis, C. D., Hughes, C. R., Whiteman, J. A., and Whittle, C. K. (1985) Compositional variations within some sedimentary chlorites and some comments on their origin: Mineral. Mag. 49, 375–386.CrossRefGoogle Scholar
  20. Dimberline, A. (1986) Electron microscope and microprobe analysis of chlorite-mica stacks in the Wenlock turbidites, mid Wales, U.K.: Geol. Magazine 123, 299–306.CrossRefGoogle Scholar
  21. Edington, J. W. (1975) Interpretation of Transmission Electron Micrographs, Monographs in Practical Electron Microscopy in Material Science, Vol. 3: The MacMillan Press Ltd., London, 112 pp.CrossRefGoogle Scholar
  22. Ferrow, E. A., London, D., Goodman, K. S., and Veblen, D. R. (1990) Sheet silicates of the Lawler Peak granite, Arizona: Chemistry, structural variations, and exsolution: Contrib. Mineral. Petr. 105, 491–501.CrossRefGoogle Scholar
  23. Foster, M. D. (1962) Interpretation of the composition and a classification of the chlorites: U.S. Geol. Survey Prof. Paper 414A, A1–A33.Google Scholar
  24. Frey, M. ( 1970) The step from diagenesis to metamorphism in pelitic rocks during Alpine orogenesis: Sedimentology 15, 261–279.CrossRefGoogle Scholar
  25. Frey, M. (1978) Progressive low-grade metamorphism of a black shale formation, central Swiss Alps, with special reference to pyrophyllite and margarite bearing assemblages: J. Petrol. 19,95-135.Google Scholar
  26. Goodwin, L. B. and Wenk, H.-R. (1990) Intracrystalline folding and cataclasis in biotite of the Santa Rosa mylonite zone: HVEM and TEM observations: Tectonophysics 172, 201–214.CrossRefGoogle Scholar
  27. Gregg, W.J. (1985) Deformation of chlorite-mica aggregates in cleaved psammitic and pelitic rocks from Islesboro, Maine, U.S.A.: J. Struc. Geol. 8, 59–68.CrossRefGoogle Scholar
  28. Guthrie, G. D., Jr. and Veblen, D. R. (1990) Interpreting one-dimensional high-resolution transmission electron micrographs of sheet silicates by computer simulation: Amer. Mineral. 75, 276–288.Google Scholar
  29. Hillier, S. and Velde, B. (1991) Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites: Clay Miner. 26, 149–168.CrossRefGoogle Scholar
  30. Hughes, C. R. (1989) The application of analytical transmission electron microscopy to the study of oolitic ironstones: A preliminary study: in Phanerozoic Ironstones, T. P. Young and W. E. G. Taylor, eds., Geological Society Special Publication No. 46, The Geological Society, London, 121–131.Google Scholar
  31. Iijima, A., and Matsumoto, R. (1982) Berthierine and chamosite in coal measures of Japan: Clays & Clay Minerals 30, 264–274.CrossRefGoogle Scholar
  32. Iijima, S. and Zhu, J. (1982) Electron microscopy of amuscovite-biotite interface: Amer. Mineral. 67, 1195–1205.Google Scholar
  33. Jahren, J. S. and Aagaard, P. (1989) Compositional variations in diagenetic chlorites and illites, and relationships with formation-water chemistry: Clay Miner. 24, 157–170.CrossRefGoogle Scholar
  34. James, R. S., Turnock, A. C., and Fawcett, J. J. (1976) The stability and phase relations of iron chlorite below 8.5 kb PH2O: Contr. Mineral. Petr. 56, 1–25.CrossRefGoogle Scholar
  35. Jiang, W.-T. and Peacor, D. R. (1991) Transmission electron microscopic study of the kaolinitization of muscovite: Clays & Clay Minerals 39, 1–13.CrossRefGoogle Scholar
  36. Jiang, W.-T., Peacor, D. R., Merriman, R. J., and Roberts, B. (1990) Transmission and analytical electron microscopic study of mixed-layer illite/smectite formed as an apparent replacement product of diagenetic illite: Clays & Clay Minerals 38, 449–468.CrossRefGoogle Scholar
  37. Kisch, H. J. (1983) Mineralogy and petrology of burial dia-genesis (burial metamorphism) and incipient metamorphism in clastic rocks: in Diagenesis in Sediments and Sedimentary Rocks, 2, G. Larsen and G. V. Chilingar, eds., Elsevier, New York, 289–493.Google Scholar
  38. Lee, J. H. and Peacor, D. R. (1983) Interlayer transitions in phyllosilicates of Martinsburg shale: Nature 303, 608–609.CrossRefGoogle Scholar
  39. Lister, J. S. and Bailey, S. W. (1967) Chlorite polytypism: IV. Regular two-layer structures: Amer. Mineral. 52, 1614–1631.Google Scholar
  40. Maas, R., McCulloch, M. T., Campbell, I. H., and Coad, P. R. (1986) Sm-Nd and Rb-Sr dating of an Archean massive sulfide deposit: Kidd Creek, Ontario: Geology 14, 585–588.CrossRefGoogle Scholar
  41. Morad, S. (1986) Mica-chlorite intergrowths in very low-grade metamorphosed sedimentary rocks from Norway: Neues Jahrbuch Mineral. Abh. 154, 271–287.Google Scholar
  42. Nelson, B. W. and Roy, R. (1958) Synthesis of the chlorites and their structural and chemical constitution: Amer. Mineral. 43, 707–725.Google Scholar
  43. Nunes, P. D. and Pyke, D. R. (1981) Time-stratigraphic correlation of the Kidd Creek orebody with volcanic rocks south of Timmins, Ontario, as inferred from zircon U-Pb ages: Econ. Geol. 76, 944–951.CrossRefGoogle Scholar
  44. Percival, J. A. and Krogh, T. E. (1983) U-Pb zircon geo-chronology of the Kapuskasing structural zone and vicinity in the Chapleau-Foleyet area, Ontario: Can. J. Earth Sci. 20, 830–843.CrossRefGoogle Scholar
  45. Roy, A. B. (1978) Evolution of slaty cleavage in relation to diagenesis and metamorphism: A study from the Hunsrückschiefer: Geol. Soc. Amer. Bull. 89, 1775–1785.CrossRefGoogle Scholar
  46. Sharp, T. G., Otten, M. T., and Buseck, P. R. (1990) Serpentinization of phlogopite phenocrysts from a micaceous kimberlite: Cont. Mineral. Petr. 104, 530–539.CrossRefGoogle Scholar
  47. Shau, Y-H., Peacor, D. R., and Essene, E. J. (1990) Corrensite and mixed-layer chlorite/corrensite metabasalt from northern Taiwan: TEM/AEM, EPMA, XRD, and optical studies: Cont. Mineral. Petr. 105, 123–142.CrossRefGoogle Scholar
  48. Slack, J. F. and Coad, P. R. (1989) Multiple hydrothermal and metamorphic events in the Kidd Creek volcanogenic massive sulphide deposit, Timmins, Ontario: Evidence from tourmalines and chlorites: Can. J. Earth Sci. 26, 694–715.CrossRefGoogle Scholar
  49. Slack, J. F., Jiang, W.-T., Peacor, D. R., and Okita, P. M. (1992) Hydrothermal and metamorphic berthierine from the Kidd Creek volcanogenic massive sulfide deposit, Timmins, Ontario: Can. Mineral, in press.Google Scholar
  50. Taylor, K.G. (1990) Berthierine from the non-marine Wealdon (Early Cretaceous) sediments of south-east England: Clay Miner. 25, 391–399.CrossRefGoogle Scholar
  51. van der Pluijm, B. A. and Kaars-Sijpesteijn, C. H. (1984) Chlorite-mica aggregates: Morphology, orientation, development and bearing on cleavage formation in very low-grade rocks: J. Struct. Geol. 6, 399–407.CrossRefGoogle Scholar
  52. Veblen, D. R. (1983) Microstructures and mixed layering in intergrown wonesite, chlorite, talc, biotite, and kaolinite: Amer. Mineral. 68, 566–580.Google Scholar
  53. Veblen, D. R. and Ferry, J. M. (1983) A TEM study of the biotite-chlorite reaction and comparison with petrologic observations: Am. Mineral. 68, 1160–1168.Google Scholar
  54. Velde, B. (1973) Phase equilibria in the system MgO-Al2O3-SiO2-H2O: Chlorites and associated minerals: Mineral. Mag. 39, 297–312.CrossRefGoogle Scholar
  55. Velde, B. (1985) Clay Minerals: A Physico-Chemical Explanation of Their Occurrence: Elsevier, Amsterdam, 427 pp.Google Scholar
  56. Velde, B. (1989) Phyllosilicate formation in berthierine peloids and iron oolites: in Phanerozoic Ironstones, T. P. Young and W. E. G. Taylor, eds., The Geological Society, London, Spec. Publ. No. 46, 3–8.Google Scholar
  57. Velde, B., Raoult, J. F., and Leikine, M. (1974) Metamorphosed berthierine pellets in Mid-Cretaceous rocks from northeastern Algeria: J. Sediment. Petrol. 44, 1275–1280.Google Scholar
  58. Walker, J. R. and Thompson, G. R. (1990) Structural variations in chlorite and illite in a diagenetic sequence from the Imperial Valley, California: Clays & Clay Minerals 38, 315–321.CrossRefGoogle Scholar
  59. Walker, R. R., Matulich, A., Amos, A. C., Watkins, J. J., and Mannard, G. W. (1975) The geology of the Kidd Creek mine: Econ. Geol. 70, 80–89.CrossRefGoogle Scholar
  60. Weaver, C. E. (1989) Clays, Muds, and Shales: Elsevier, Amsterdam, 819 pp.Google Scholar
  61. Woodland, B. G. (1985) Relationship of concretions and chlorite-muscovite porphyroblasts to the development of dominant cleavage in low-grade metamorphic deformed rocks from north-central Wales, Great Britain: J. Struc. Geol. 7, 205–215.CrossRefGoogle Scholar
  62. Worden, R. H., Droop, G. T. R., and Champness, P. E. (1991) The reaction antigorite → olivine + talc + H2O in the Bergell aureole, N. Italy: Mineral. Mag. 55, 367–377.CrossRefGoogle Scholar
  63. Yau, Y. C., Anovitz, L. M., Essene, E. J., and Peacor, D. R. (1984) Phlogopite-chlorite reaction mechanisms and physical conditions during retrograde reactions in the Marble Formation, Franklin, New Jersey: Contr. Mineral. Petr. 88, 299–306.CrossRefGoogle Scholar
  64. Young, T. P. (1989) Phanerozoic ironstones: An introduction and review: in Phanerozoic Ironstones, T. P. Young and W. E. G. Taylor, eds., Geological Society Special Publication No. 46, The Geological Society, London, ix–xxv.Google Scholar

Copyright information

© The Clay Minerals Society 1992

Authors and Affiliations

  • Wei-Teh Jiang
    • 1
  • Donald R. Peacor
    • 1
  • John F. Slack
    • 2
  1. 1.Department of Geological SciencesThe University of MichiganAnn ArborUSA
  2. 2.U. S. Geological Survey, National CenterRestonUSA

Personalised recommendations