Advertisement

Clays and Clay Minerals

, Volume 40, Issue 3, pp 292–299 | Cite as

The Thermodynamic Status of Compositionally-Variable Clay Minerals: A Discussion

  • Stephen U. Aja
  • Philip E. Rosenberg
Article

Abstract

According to Lippmann (1977, 1982) wide compositional variations and excess enthalpies of mixing calculated with electrostatic models imply that clay minerals of variable composition are dis-equilibrium solids. However, recent ATEM analyses of illite samples indicate compositional homogeneity of single illite grains and limited compositional variations in sedimentary basins. Moreover, Lippmann’s electrostatic model may be inadequate inasmuch as it neglects polarization energy which is known to be a significant component of lattice energy even in dominantly ionic structures. Contrary to the assumptions of Lippmann, I/S minerals have also been shown to undergo Ostwald ripening.

May et al. (1986) reported that smectites do not reversibly control equilibria and further argued that conceptual and experimental deficiencies inherent in the solubility method prevent the attainment and demonstration of equilibrium in experiments with complex aluminosilicates of variable composition. However, equilibrium may be assumed if: (1) steady states are approached from both under- and over-saturation, (2) the slopes of univariant lines representing mineral-solution equilibria are rational over a wide range of solution compositions and temperature, and (3) results are reproducible in experiments of long duration. Recent solubility studies of smectites, chlorites, and illites meet these criteria indicating that clay minerals of variable composition are true phases capable of attaining equilibrium.

Key Words

Illite Montmorillonite Thermodynamic status Excess lattice energy Solubility Compositional variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aagaard P. and Helgeson H. C. (1983) Activity/composition relations among silicates and aqueous solutions: II. Chemical and thermodynamic consequences of ideal mixing of atoms on homological sites in montmorillonites, illites and mixed-layered clays: Clays & Clay Minerals 31, 207–217.CrossRefGoogle Scholar
  2. Aja S. U. (1991) Illite equilibria in solutions: III. A reinterpretation of the data of Sass et al. (1987): Geochim. Cosmochim. Acta 55, 3431–3435.CrossRefGoogle Scholar
  3. Aja S. U. and Rosenberg P. E. (1991) Do equilibrium solubility models apply to clay minerals of variable composition?: Geol. Soc. Amer. Abstr. with Program 23, A151.Google Scholar
  4. Aja S. U., Rosenberg P. E., and Kittrick, J. A. (1991a) Illite equilibria in solutions: I. Phase relationships in the system K2O-Al2O3-SiO2-H2O between 25° and 250°C: Geochim. Cosmochim. Acta 55, 1353–1364.CrossRefGoogle Scholar
  5. Aja S. U., Rosenberg P. E., and Kittrick J. A. (1991b) Illite equilibria in solutions: II. Phase relationships in the system K2O-MgO-Al2O3-SiO2-H2O: Geochim. Cosmochim. Acta 55, 1365–1374.CrossRefGoogle Scholar
  6. Badault D. and Risacher F. (1983) Authigenic smectite on diatom frustules in Bolivian saline lakes: Geochim. Cosmochim. Acta 47, 363–375.CrossRefGoogle Scholar
  7. Baronnet A. (1982) Ostwald ripening in solution. The case of calcite and mica: Estudios Geologicos (Madrid) 38, 185–198.Google Scholar
  8. Eberl D. D., Srodon J., Kralik M., Taylor B., and Peterman Z. E. (1990) Ostwald ripening of clays and metamorphic minerals: Nature 248, 474–477.Google Scholar
  9. Gaudette H. E. (1965) Illite from Fond du Lac County, Wisconsin: Amer. Mineral. 50, 411–417.Google Scholar
  10. Gaudette H. E., Eades J. L., and Grim R. E. (1966) The nature of illites: Proc. 13th Natl. Conf. Clays Clay Mineral., 33–48.Google Scholar
  11. Giggenbach W. F. (1985) Construction of thermodynamic stability diagrams involving dioctahedral potassium clay minerals: Chem. Geol. 49, 231–242.CrossRefGoogle Scholar
  12. Glynn P. D. and Reardon E. J. (1990) Solid-solution aqueous-solution equilibria: thermodynamic theory and representation: Amer. J. Sci. 290, 164–201.CrossRefGoogle Scholar
  13. Giiven N. (1972) Electron optical observations in Marblehead illite: Clays & Clay Minerals 37, 1–11.Google Scholar
  14. Güven N. (1988) Smectites in Hydrous Phyllosilicates (exclusive of micas): Reviews in Mineralogy, S. W. Bailey, ed., 19, 497–559.Google Scholar
  15. Grim R. E. and Bradley W. F. (1939) A unique clay from the Goose Lake, Illinois, area: J. Amer. Ceram. Soc. 22, 157–164.CrossRefGoogle Scholar
  16. Hower J. and Mowatt T. C. (1966) The mineralogy of illites and mixed-layer illite/montmorillonites: Amer. Min. 51, 825–854.Google Scholar
  17. Huheey J. E. (1983) Inorganic Chemistry: Principles of Structure and Reactivity. Harper and Roe, New York, pp 936.Google Scholar
  18. Inoue A., Velde B., Meunier A., and Touchard G. (1988) Mechanism of illite formation during smectite-to-illite conversion in a hydrothermal system: Amer. Min. 73, 1325–1334.Google Scholar
  19. Jiang W., Essene E. J., and Peacor D. R. (1990) Transmission electron microscopic study of coexisting pyrophyllite and muscovite: Direct evidence for the metastability of illite: Clays & Clay Minerals 38, 225–240.CrossRefGoogle Scholar
  20. Kittrick J. A. (1971) Stability of montmorillonites: I. Belle Fourche and Clay Spur montmorillonites: Soil Sci. Soc. Amer. Proc. 35, 140–145.CrossRefGoogle Scholar
  21. Kittrick J. A. (1982) Solubility of two high-Mg and two high-Fe chlorites using multiple equilibria: Clays & Clay Minerals 30, 167–179.CrossRefGoogle Scholar
  22. Kittrick J. A. (1984a) Some equilibrium considerations in the formation of chlorite in soils and sediments: Soil Sci. Soc. Amer. J. 48, 687–689.CrossRefGoogle Scholar
  23. Kittrick J. A. (1984b) Solubility measurements of phases in three illites: Clays & Clay Minerals 32, 115–124.CrossRefGoogle Scholar
  24. Kittrick J. A. and Peryea F. J. (1988) Experimental validation of the monophase structure model for montmorillonite stability: Soil Sci. Soc. Amer. J. 52, 199–201.CrossRefGoogle Scholar
  25. Kittrick J. A. and Peryea F. J. (1989) The monophase model for Mg-saturated montmorillonite: Soil Sci. Soc. Amer. J. 53, 292–295.CrossRefGoogle Scholar
  26. Lafon G. M. (1978) Discussion of: Equilibrium criteria for two component solids reacting with fixed compositions in an aqueous phase-example: The magnesian calcites: Amer. J. Sci. 278, 1455–1468.CrossRefGoogle Scholar
  27. Lanson B. and Champion D. (1991) The I/S-to-illite reaction in the late stage diagenesis: Amer. J. Sci. 291, 473–506.CrossRefGoogle Scholar
  28. Lasaga A. C. (1980) Defect calculations in silicates: Olivine: Amer. Mineral. 65, 1237–1248.Google Scholar
  29. Lippmann F. (1977) The solubility products of complex minerals, mixed crystals, and three-layer clay minerals: N. Jb. Miner. Abh. 130, 243–263.Google Scholar
  30. Lippmann F. (1982) The thermodynamic status of clay minerals: Proc. 7th Int. Clay Conf., 1981, pp. 475–485.Google Scholar
  31. Lonker S. W., Fitz Gerald J. D., Hedenquist J. W., and Walshe J. (1990) Mineral-fluid interactions in the Broadlands-Ohaaki geothermal system, New Zealand: Amer. J. Sci. 290, 995–1068.CrossRefGoogle Scholar
  32. Loucks R. R. (1991) The bound interlayer H2O content of potassic micas: Muscovite-hydromuscovite-hydropyrophyllite solutions: Amer. Mineral. 76, 1563–1579.Google Scholar
  33. Mankin C. J. and Dodd C. G. (1963) Proposed reference illite from the Ouchita Mountains of Southeastern Oklahoma: Proc. 10th Natl. Conf. Clays Clay Min., 372–379.Google Scholar
  34. May H. M., Kinniburgh D. G., Helmke P. A., and Jackson M. L. (1986) Aqueous dissolution, solubilities and thermodynamic stabilities of common aluminosilicate clay minerals: Kaolinite and smectites: Geochim. Cosmochim. Acta 50, 1667–1677.CrossRefGoogle Scholar
  35. Merino E. and Ransom B. (1982) Free energies of formation of illite solid solutions and their compositional dependence: Clays & Clay Minerals 30, 29–39.CrossRefGoogle Scholar
  36. Meunier A. and Velde B. (1989) Solid solution in I/S mixedlayer minerals and illite: Amer. Min. 74, 1106–1112.Google Scholar
  37. Nordstrom D. K. and Munoz J. L. (1985) Geochemical Thermodynamics: Blackwell Scientific Publications, Palo Alto, pp 447.Google Scholar
  38. Peryea F. J. and Kittrick J. A. (1986) Experimental evaluation of two operational standard states for montmorillonite in metastable hydrolysis reactions: Soil Sci. Soc. A m. Proc. 50, 1613–1617.CrossRefGoogle Scholar
  39. Price G. D., Parker S. C., and Leslie M. (1987) The lattice dynamics of forsterite: Mineral. Magazine, 51, 157–170.CrossRefGoogle Scholar
  40. Ransom B. and Warren E. A. (1989) How well do we know clay mineral structural formulas: An evaluation of errors inherent in XRD/BULK chemical and electron microscope techniques: Geol. Soc. Amer. Abstr. with Program 21, pA44.Google Scholar
  41. Rosenberg P. E., Kittrick J. A., and Aja S. U. (1990) Mixedlayer illite/smectite: A multi-phase model: Amer. Min. 75, 1182–1185.Google Scholar
  42. Sass B. M., Rosenberg P. E., and Kittrick J. A. (1987) The stability of illite/smectite during diagenesis: An experimental study: Geochim. Cosmochim. Acta 51, 2103–2115.CrossRefGoogle Scholar
  43. Srodon J. (1984) X-ray identification of illitic materials: Clays & Clay Minerals 32, 337–349.CrossRefGoogle Scholar
  44. Talibudeen O. and Goulding K. W. T. (1983) Charge heterogeneity in smectites: Clays & Clay Minerals 31, 37–42.CrossRefGoogle Scholar
  45. Tardy Y. and Fritz B. (1981) An ideal solid solution model for calculating solubility of clay minerals: Clay Miner. 16, 361–373.CrossRefGoogle Scholar
  46. Thorstensen D. C. and Plummer L. N. (1977) Equilibrium criteria for two-component solids reacting with fixed composition in an aqueous phase-example: The magnesian calcites: Amer. J. Sci. 277, 1203–1223.CrossRefGoogle Scholar
  47. Urusov V. S. (1975) Energetic theory of miscibility gaps in mineral solid solutions: Forstschr. Mineral. 52 (special issue), 141–150.Google Scholar
  48. Warren E. A. and Curtis C. D. (1989) The chemical composition of authigenic illite within two sandstone reservoirs as analyzed by ATEM: Clay Miner. 24, 137–156.CrossRefGoogle Scholar
  49. Weaver C. E. and Pollard L. D. (1973) The Chemistry of Clay Minerals. Elsevier, Amsterdam, 213 pp.Google Scholar

Copyright information

© The Clay Minerals Society 1992

Authors and Affiliations

  • Stephen U. Aja
    • 1
  • Philip E. Rosenberg
    • 2
  1. 1.Department of Geological SciencesMcGill UniversityMontréalCanada
  2. 2.Department of GeologyWashington State UniversityPullmanUSA

Personalised recommendations