Advertisement

Clays and Clay Minerals

, Volume 40, Issue 3, pp 273–279 | Cite as

Occurrence and Palaeohydrological Significance of Authigenic Kaolinite in the Aldebaran Sandstone, Denison Trough, Queensland, Australia

  • Julian C. Baker
  • Suzanne D. Golding
Article

Abstract

Thin section, XRD, SEM, and isotopic techniques have been used to study authigenic kaolinite occurring in reservoir sandstones of the Lower Permian Aldebaran Sandstone. Where the unit is no longer an active aquifer, kaolinite is an intermediate-stage phase, and is highly depleted in deuterium (δDSMOW = −115 to −99‰) and 18O (δ18OSMOW = +7.8 to +8.9‰), indicating that precipitation must have been from meteoric water. Deep penetration of this water is linked to Late Triassic deformation and uplift of the Denison Trough sequence, an event which led to exposure of the Aldebaran Sandstone by the Early Jurassic prior to its re-burial beneath Jurassic and Cretaceous sedimentary rocks. The same water was probably involved in the creation of secondary porosity in the interval.

Where the Aldebaran Sandstone is presently undergoing meteoric flushing, kaolinite is relatively enriched in deuterium (δDSMOW = −104 to −93‰) and 18O (δ18OSMOW = +11.7 to +14.6‰), reflecting precipitation largely from post-Mesozoic meteoric water which was isotopically heavier than the Mesozoic water involved in intermediate-stage kaolinite precipitation. This temporal shift in meteoric water isotopic composition is related to the northward drift of the Australian continent to lower latitudes since the Mesozoic Era.

Key Words

Aquifer Diagenesis Kaolinite Petrography Secondary porosity Stable isotope analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayalon A. and Longstaffe F. J. (1988) Oxygen isotope studies of diagenesis and pore-water evolution in the western Canada sedimentary basin: Evidence from the Upper Cretaceous basal Belly River Sandstone, Alberta: J. Sed. Petrol. 58, 489–505.Google Scholar
  2. Baker J. C. (1989) Petrology, diagenesis and reservoir quality of the Aldebaran Sandstone, Denison Trough, east-central Queensland: Ph.D. thesis, Department of Geology and Mineralogy, Queensland University, 255 p.Google Scholar
  3. Baker J. C. (1991) Diagenesis and reservoir quality of the Aldebaran Sandstone, Denison Trough, east-central Queensland, Australia: Sedimentology 38, 819–838.CrossRefGoogle Scholar
  4. Baker J. C. and Caritat P. de. (1992) Post-depositional history of the Permian sequence in the Denison Trough, eastern Australia: AAPG Bull, (in press).Google Scholar
  5. Bird M. I. and Chivas A. R. (1988) Stable isotope evidence for low-temperature kaolinitic weathering and post-formational hydrogen-isotope exchange in Permian kaolinites: Chemical Geology 72, 249–265.Google Scholar
  6. Bird M. I. and Chivas A. R. (1989) Stable-isotope geochronology of the Australian regolith: Geochim. Cosmochim. Acta 53, 3239–3256.CrossRefGoogle Scholar
  7. Bjørkum P. A., Mjøs R., Walderhaug O., and Hurst A. (1990) The role of the late Cimmerian unconformity for the distribution of kaolinite in the Gullfaks Field, northern North Sea: Sedimentology 37, 395–406.CrossRefGoogle Scholar
  8. Bjørlykke K. (1983) Diagenetic reactions in sandstones: in Sediment Diagenesis, A. Parker and B. W. Sellwood, eds., 169–213.CrossRefGoogle Scholar
  9. Bjørlykke K. and Brendsdal A. (1986) Diagenesis of the Brent Sandstone in the Statfjord Field, North Sea: in Roles of Organic Matter in Sediment Diagenesis, D. L. Gautier, ed., SEPM Spec. Pub. 38, 157–167.CrossRefGoogle Scholar
  10. Brown R. S., Elliott L. G., and Mollah R. J. (1983) Recent exploration and petroleum discoveries in the Denison Trough, Queensland: Australian Petroleum Exploration Association Journal 23, 120–135.Google Scholar
  11. Burley S. D., Kantorowicz J. D., and Waugh B. (1985) Clastic diagenesis: in Sedimentology: Recent Developments and Applied Aspects: Geol. Soc. Spec. Pub. 18, 189–226.Google Scholar
  12. Clayton R. N. and Mayeda T. K. (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis: Geochim. Cosmochim. Acta 27, 43–52.CrossRefGoogle Scholar
  13. Coleman M. L., Shepherd T. J., Durham J. J., Rouse J. E., and Moore G. R. (1982) Reduction of water with zinc for hydrogen isotope analysis: Anal. Chem. 54, 993–995.CrossRefGoogle Scholar
  14. Curtis C. D. (1983) Link between aluminium mobility and destruction of secondary porosity: Bull. Amer. Ass. Petrol. Geol. 67, 380–384.Google Scholar
  15. Fisher R. S. and Land L. S. (1986) Diagenetic history of Eocene Wilcox sandstones, south-central Texas: Geochim. Cosmochim. Acta 50, 551–561.CrossRefGoogle Scholar
  16. Folk R. L., Andrews P. B., and Lewis D. W. (1970) Detrital sedimentary rock classification and nomenclature for use in New Zealand: New Zealand Journal of Geology & Geophysics 13, 937–968.CrossRefGoogle Scholar
  17. Franks S. G. and Forester R. W. (1984) Relationships among secondary porosity pore-fluid chemistry and carbon dioxide, Texas Gulf Coast: in Clastic Diagenesis, D. A. McDonald and R. C. Surdam, eds., Amer. Ass. Petrol. Geol. Memoir 37, 63–79.Google Scholar
  18. Giles M. R. and Marshall J. D. (1986) Constraints on the development of secondary porosity in the subsurface: Reevaluation of processes: Marine & Petroleum Geology 3, 243–255.CrossRefGoogle Scholar
  19. Glasmann J. R., Lundegard P. D., Clark R. A., Penny B. K., and Collins I. D. (1989) Geochemical evidence for the history of diagenesis and fluid migration: Brent Sandstone, Heather Field, North Sea: Clay Miner. 24, 255–284.CrossRefGoogle Scholar
  20. Hoefs, J. (1987) Stable Isotope Geochemistry: Springer-Verlag, Berlin, 241 pp.CrossRefGoogle Scholar
  21. Land L. S. and Dutton S. P. (1978) Cementation of a Pennsylvanian deltaic sandstone: Isotopic data: J. Sed. Petrol. 48, 1167–1176.Google Scholar
  22. Longstaffe F. J. and Ayalon A. (1987) Oxygen-isotope studies of clastic diagenesis in the Lower Cretaceous Viking Formation, Alberta: Implications for the role of meteoric water: in Diagenesis of Sedimentary Sequences, J. D. Marshall, ed., Geol. Soc. Spec. Pub. 36, 277–296.Google Scholar
  23. Longstaffe F. J. and Ayalon A. (1990) Hydrogen-isotope geochemistry of diagenetic clay minerals from Cretaceous sandstones, Alberta, Canada: Evidence for exchange: Applied Geochemistry 5, 657–668.CrossRefGoogle Scholar
  24. O’Neil J. R. and Kharaka Y. K. (1976) Hydrogen and oxygen isotope exchange between clay minerals and water: Geochim. Cosmochim. Acta 40, 257–266.CrossRefGoogle Scholar
  25. Schmidt V. and McDonald D. A. (1979) The role of secondary porosity in the course of sandstone diagenesis: in Aspects of Diagenesis, P. A. Scholle and P. R. Schluger, eds., SEPM Spec. Pub. 26, 175–207.CrossRefGoogle Scholar
  26. Smith A. G., Hurley A. M., and Briden J. C. (1981) Phanerozoic Palaeocontinental World Maps: Cambridge University Press, 102 pp.Google Scholar
  27. Surdam R. C., Crossey L. J., Hagen E. S., and Heasler H. P. (1989) Organic-inorganic interactions and sandstone diagenesis: Bull. Amer. Ass. Petrol. Geol. 73, 1–23.Google Scholar
  28. Taylor T. R. (1990) The influence of calcite dissolution on reservoir porosity in Miocene sandstones, Picaroon Field, offshore Texas Gulf Coast: J. Sed. Petrol. 60, 322–334.Google Scholar
  29. Yeh H. and Savin S. M. (1977) Mechanism of burial metamorphism of argillaceous sediments, O-isotope evidence: Geol. Soc. Amer. Bull. 88, 1321–1330.CrossRefGoogle Scholar
  30. Ziolkowski V. and Taylor R. (1985) Regional structure of the north Denison Trough: in Bowen Basin Coal Symposium, Geol. Soc. Aust. Absts. 17, 129–135.Google Scholar

Copyright information

© The Clay Minerals Society 1992

Authors and Affiliations

  • Julian C. Baker
    • 1
  • Suzanne D. Golding
    • 2
  1. 1.Centre for Microscopy & MicroanalysisUniversity of QueenslandQueenslandAustralia
  2. 2.Department of Earth SciencesUniversity of QueenslandQueenslandAustralia

Personalised recommendations