Clays and Clay Minerals

, Volume 39, Issue 6, pp 651–657 | Cite as

Surface Acidity of Palygorskite-Supported Rhodium Catalysts

  • Juana Herrero
  • Jesús A. Pajares
  • Carmen Blanco


Infrared spectra of adsorbed pyridine have been used to obtain qualitative information on the nature of the interaction of pyridine with different rhodium catalysts supported on palygorskite and silica. Based on these data, qualitative definitions of the adsorption sites of these catalysts have been deduced. The catalysts were prepared with natural palygorskite, and palygorskite dehydrated in vacuo at 150°C and 400°C. In this way, catalysts were obtained that had different water contents and, therefore, different acidities. Lewis-bound pyridine was detected by infrared spectroscopy from room temperature to 500°C. The greatest acidity was found in a catalyst prepared with the palygorskite support dehydrated at 150°C before preparation of the catalyst. With this catalyst, strongly hydrogen-bound pyridine was observed when evacuation was carried out at temperatures between 150°C and 300°C. Catalysts prepared with the palygorskite support pretreated at 400°C did not exhibit strongly hydrogen-bound pyridine, and Lewis acidity decreased significantly. As expected, hydrogen-bound pyridine was also detected for rhodium supported on silica. However, it was desorbed at temperatures below 150°C. The results of the acidity studies follow the same pattern as those for 1 -hexene double-bond migration under hydrogénation reaction conditions.

Key Words

Pyridine Catalysis Palygorskite Rhodium Surface acidity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbot, J., Corma, A., and Wojciechowski, B.W. (1985) The catalytic isomerization of 1-hexene on H-ZSM-5 zeolite: The effects of a shape-selective catalyst: J. Catal. 92, 398–408.CrossRefGoogle Scholar
  2. Adams, J. M., Thomas, J. M., and Walters, M. J. (1975) The surface and intercalate chemistry of the layered silicates. Part IV. Crystallographic, electron-spectroscopic, and kinetic studies of the sodium montmorillonite-pyridine system: J. C. S. Dalton, 1459–1463.Google Scholar
  3. Ballantine, J. A., Purnell, J. H., and Thomas, J. M. (1984) Sheet silicates: Broad spectrum catalysts for organic synthesis: J. Mol. Catal. 27, 157–167.CrossRefGoogle Scholar
  4. Benesi, H. A. and Winquist, B. H. C. (1978) Surface acidity of solid catalysts: Adv. Catal. 27, 97–182.Google Scholar
  5. Blanco, C., Herrero, J., Mendioroz, S., and Pajares, J. A. (1988) Surface acidity and reversible folding in palygorskite: Clays & Clay Minerals 36, 364–368.CrossRefGoogle Scholar
  6. Bradley, W. F. (1940) The structural scheme of attapulgite: Amer. Mineral. 25, 405–410.Google Scholar
  7. Farmer, V. C. (1974) Layer silicates: in Infrared Spectra of Minerals, silicates, V. C. Farmer, ed., Mineralogical Society, London, 331–360.CrossRefGoogle Scholar
  8. Farmer, V. C. and Mortland, M. M. (1966) An infrared study of the coordination of pyridine and water to exchangeable cations in montmorillonite and saponite: J. Chem. Soc.A, 344–351.Google Scholar
  9. Flockart, B. D., Leith, I. R., and Pink, R. C. (1967) Evidence for the redox nature of the surface of catalytic aluminas: J. Catal. 9, 45–50.CrossRefGoogle Scholar
  10. Fukuoka, A., Ichikawa, M., Hriljac, J. A., and Shriver, D. F. (1987) Promoter effect of iron on olefin hydroformilation catalyzed by SiO2-supported rhodium-iron bimetallic carbonyl clusters: Rh-Fe3+ bimetallic activation of catalytic CO insertion: Inorg. Chem. 26, 3643–3645.CrossRefGoogle Scholar
  11. González, J. F. (1988) Palygorsquitas españolas. Aplicabilidad en adsorción y catálisis: Tesis Doctoral, Universidad de Oviedo, Santander, Spain, 1–86.Google Scholar
  12. González, F., Pesquera, C., Blanco, C., Benito, I., Mendioroz, S., and Pajares, J. A. (1989) Structural and textural evolution of Al- and Mg-rich palygorskites, I. Under acid treatment: Appl. Clay Science 4, 373–388.CrossRefGoogle Scholar
  13. Grim, R. E. (1988) 1986 George W. Brindley Lecture. The history of the development of clay minerals: Clays & Clay Minerals 36, 97–101.CrossRefGoogle Scholar
  14. Herrero, J., Blanco, C., Esteruelas, M. A., and Oro, L. A. (1990) Surface-bound organometallic rhodium precursors for 1-hexene hydrogenation: Appl. Organometal. Chem. 4, 157–162.CrossRefGoogle Scholar
  15. Hughes, T. R. and White, H. M. (1967) A study of the surface structure of decationized Y zeolite by quantitative infrared spectroscopy: J. Phys. Chem. 71, 2192–2201.CrossRefGoogle Scholar
  16. Ichikawa, M., Lang, A. J., Shriver, D. F., and Sachtier, W. M. H. (1985) Selective hydroformylation of ethylene on Rh-Zn/SiO2. An apparent example of site isolation of Rh and Lewis acid promoted CO insertion. J. Am. Chem. Soc. 107, 7216–7218.CrossRefGoogle Scholar
  17. Jacobs, P. A. (1984) The measurement of surface acidity: in Characterization of Heterogeneous Catalysts. F. Delannay, ed., Marcel Dekker, New York, 367–404.Google Scholar
  18. Kellner, C. S. and Bell, A. T. (1981) Infrared studies of carbon monoxide hydrogénation over alumina-supported ruthenium. J. Catal. 71, 296–307.CrossRefGoogle Scholar
  19. Knözinger, H. (1976) Specific poisoning and characterization of catalytically active oxide surfaces: Adv. Catal. 25, 184–271.Google Scholar
  20. Kung, M. C. and Kung, H. H. (1985) IR studies of NH3, pyridine, CO, and NO adsorbed on transition metal oxides: Catal. Rev.-Sci. Eng. 27, 425–460.CrossRefGoogle Scholar
  21. Lamb, H. H., Gates, B. C., and Knözinger, H. (1988) Molecular organometallic chemistry on surfaces. Reactivity of metal carbonyls on metal oxides: Angew. Chem. Int. ed. Engl. 27, 1127–1144.CrossRefGoogle Scholar
  22. Laszlo, P. and Moison, H. (1989) Catalysis of Diels-Alder reactions with acrolein as dienophile by iron(III)-doped montmorillonite: Chem. Lett. 1031–1034.Google Scholar
  23. Matsuda, T., Fuse, T., and Kikuchi, E. (1987) The effect of spilled-over hydrogen on the activity of montmorillonite pillared by aluminum oxide for conversion of trimethylbenzenes: J. Catal. 106, 38–46.CrossRefGoogle Scholar
  24. Parry, E. P. (1963) An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity: J. Catal. 2, 371–379.CrossRefGoogle Scholar
  25. Pinilla, E., Oro, L. A., and Sariego, R. (1980) Methylpyridine and methoxypyridine cationic rhodium(I) complexes with norbornadiene: J. Less-Common Met. 72, 31–36.CrossRefGoogle Scholar
  26. Raythata, R. and Pinnavaia, T. J. (1983) Clay intercalation catalysts interlayered with rhodium phosphine complexes. Surface effects on the hydrogénation and isomerization of 1-hexene: J. Catal. 80, 47–55.CrossRefGoogle Scholar
  27. Rupert, J. P., Granquist, W. T., and Pinnavaia, T. J. (1987) Catalytic properties of clay minerals: in Chemistry of Clays and Clay Minerals, A. C. D. Newman, ed., Mineralogical Society, Longman.Google Scholar
  28. Ryskin, Ya. I. (1974) The vibrations of protons in minerals: Hydroxyl, water and ammonium: in Infrared Spectra of Minerals, V. C. Farmer, ed., Mineralogical Society, London, 137–181.CrossRefGoogle Scholar
  29. Serna, C., Van Scoyoc, G. E., and Ahlrichs, J. L. (1977) Hydroxyl groups and water in palygorskite: Amer. Mineral. 62, 784–792.Google Scholar
  30. Van Scoyoc, G. E., Serna, C. J., and Ahlrichs, J. L. (1979) Structural changes in palygorskite during dehydration and dehydroxylation: Amer. Mineral. 64, 215–223.Google Scholar
  31. Zakharov, V. A. and Yermakov, Yu. I. (1979) Supported organometallic catalysts for olefin polymerization: Catal. Rev.-Sci. Eng. 19, 67–103.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1991

Authors and Affiliations

  • Juana Herrero
    • 1
  • Jesús A. Pajares
    • 2
  • Carmen Blanco
    • 1
  1. 1.Departamento de Química, Facultad de CienciasUniversidad de CantabriaSantanderSpain
  2. 2.Instituto Nacional del CarbónCSICOviedoSpain

Personalised recommendations