Clays and Clay Minerals

, Volume 39, Issue 6, pp 597–608 | Cite as

Mineralogy and Genesis of Clays in Postmagmatic Alteration Zones, Makurazaki Volcanic Area, Kagoshima Prefecture, Japan

  • Motoharu Kawano
  • Katsutoshi Tomita


Two distinct zonal sequences of clay minerals (H- and L-type) were found around silicified rocks in the Makurazaki volcanic area, Kagoshima Prefecture, Japan. The clay mineral sequences from the inner to the outer parts of the alteration aureoles are: 1. H-type, pyrophyllite → dickite → 2M2 mica → sudoite → tosudite; and 2. L-type, kaolinite → rectorite → smectite. The structural formula for the sudoite is: (Al1.04Mg1.28Fe3+0.20Ti0.03Li0.01K0.02Na0.01(OH)6Al2.00(Si3.54Al0.46)O10(OH)2. It is characterized by relatively large amounts of Mg and very small amounts of Li. The polytype is identified as IIb. The chemical analysis of tosudite shows that the sample is composed of an interstratification of sudoite-like and beidellite-like layers. The structural formula for rectorite is: (K0.45Na0.19Ca0.01Mg0.01)(Al1.81Fe3+0.04Mg0.13Ti0.03)(Si3.41Al0.59)O10(OH)2, suggesting that the nonexpandable and expandable layers have K-mica-like and beidellite-like compositions, respectively. These clay minerals in the H- and L-type alteration aureoles were formed under relatively high- and low-temperature conditions, respectively, with pH value and K- and Mg-activities increasing as the fluids ascended through the wall rocks.

Key Words

Makurazaki volcanic area Alteration aureoles Mode of occurrence Mineralogical properties Sudoite Tosudite Rectorite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, S. W. (1963) Polymorphism of the kaolin minerals: Amer. Mineral. 48, 1196–1209.Google Scholar
  2. Brindley, G. W. and Wan, Hsien-Ming (1978) The 14 Å phase developed in heated dickites: Clay Miner. 13, 17–23.CrossRefGoogle Scholar
  3. Brindley, G. W. and Wardle, R. (1970) Monoclinic and triclinic forms of pyrophyllite and pyrophyllite anhydride: Amer. Mineral. 55, 1259–1272.Google Scholar
  4. Brown, G., Bourguignon, P., and Thorez, J. (1974) A lithium-bearing aluminian regular mixed layer montmorillonite-chlorite from Huy, Belgium: Clay Miner. 10, 135–144.CrossRefGoogle Scholar
  5. Deer, W., Howie, R. A., and Zussman, J. (1962) Rock Forming Minerals, Vol. 3, Sheet Silicates: Longmans, London, 270 pp.Google Scholar
  6. Eberl, D. and Hower, J. (1975) Kaolinite synthesis: The role of the Si/Al and (alkali)/(H+) ratio in hydrothermal systems: Clays & Clay Minerals 23, 301–309.CrossRefGoogle Scholar
  7. Eberl, D. (1978a) Reaction series for dioctahedral smectite: Clays & Clay Minerals 26, 327–340.CrossRefGoogle Scholar
  8. Eberl, D. (1978b) The reaction of montmorillonite to mixedlayer clay: The effect of interlayer alkaline earth cations: Geochim. Cosmochim. Acta 42, 1–7.CrossRefGoogle Scholar
  9. Farmer, V. C. and Russell, J. D. (1964) The infrared spectra of layer silicates: Spectrochim. Acta 20, 1149-117.Google Scholar
  10. Fransolet, A. M. and Schreyer, W. (1984) Sudoite, di/trioctahedral chlorite: A stable low-temperature phase in the system MgO-Al2O3-H2O: Contrib. Mineral. Petrol. 86, 409–417.CrossRefGoogle Scholar
  11. Fujii, N. and Inoue, I. (1971) Geologic features and classification of the pyrophyllite deposits in the Hokushin district, Central Japan: Mining Geol. 21, 407–417 (in Japanese).Google Scholar
  12. Hayashi, H. and Oinuma, K. (1964) Aluminian chlorite from Kamikita mine, Japan: Clay Sci. 2, 22–30.Google Scholar
  13. Hayashi, H. and Oinuma, K. (1965) Relationship between infrared absorption spectra in the region of 450–900 cm−1 and chemical composition of chlorite: Amer. Mineral. 50, 476–483.Google Scholar
  14. Hayashi, H. and Oinuma, K. (1967) Si-O absorption bands near 1000 cm−1 and OH absorption bands of chlorites: Amer. Mineral. 52, 1206–1210.Google Scholar
  15. Henmi, K. and Matsuda, T. (1975) The equilibrium boundaries between kaolinite and pyrophyllite: in Contributions to Clay Mineralogy, Dedicated to Prof. Toshio Sudo on the Occasion of his Retirement, K. Henmi, ed., Prof. Sudo Retirement Ceremony Organization, Tokyo, 151–156.Google Scholar
  16. Higashi, S. (1980) Mineralogical studies of hydrothermal dioctahedral mica minerals: Memo. Fac. Sci. Kochi Univ. 1, 1–39.Google Scholar
  17. Higashi, S. (1990) Li-tosudite in Tobe pottery stone: J. Mineral. Soc. Japan. Spec. Issue 19, 3–9 (in Japanese).Google Scholar
  18. Hill, R. D. (1955) 14 Å spacings in kaolin minerals: Acta Crystallogr. 8, 120.CrossRefGoogle Scholar
  19. Ichikawa, A. and Shimoda, S. (1976) Tosudite from the Hokuno mine, Hokuno, Gifu Prefecture, Japan: Clays & Clay Minerals 24, 142–148.CrossRefGoogle Scholar
  20. Inoue, A. and Utada, M. (1989) Mineralogy and genesis of hydrothermal aluminous clays containing sudoite, tosudite, and rectorite in a drillhole near the Kamikita Kuroko ore deposit, northern Honshu, Japan: Clay Sci. 7, 193–217.Google Scholar
  21. Izawa, E., Urashima, Y., and Okubo, Y. (1984) Age of mineralization of the Nansatsu type gold deposits, Kagoshima, Japan—K-Ar dating of alunite from Kasuga, Iwato and Akeshi: Mining Geol. 34, 343–351 (in Japanese).Google Scholar
  22. Jepson, W. B. and Rowse, J. B. (1975) The composition of kaolinite—An electron microscope microprobe study: Clays & Clay Minerals 23, 310–317.CrossRefGoogle Scholar
  23. Kanaoka, S. (1975) Tosudite-like clay minerals in pottery stone: in Contributions to Clay Mineralogy, Dedicated to Prof. Toshio Sudo on the Occasion of his Retirement, K. Henmi, ed., Prof. Sudo Retirement Ceremony Organization, Tokyo, 34–41 (in Japanese).Google Scholar
  24. Kawano, M., Tomita, K., Yamamoto, M., and Oba, N. (1986) Clay minerals, especially on interstratified minerals, in and around Makurazaki area, Kagoshima Prefecture, Japan: Rept. Fac. Sci. Kagoshima Univ. 19, 45–66 (in Japanese).Google Scholar
  25. Kawano, M. and Tomita, K. (1989) Rehydration properties of Na-rectorite from Makurazaki, Kagoshima Prefecture, Japan: Miner. J. (Tokyo) 14, 351–372.CrossRefGoogle Scholar
  26. Kawano, M. and Tomita, K. (1991) X-ray powder diffraction studies on the rehydration properties of beidellite: Clays & Clay Minerals 39, 77–83.CrossRefGoogle Scholar
  27. Kimbara, K. and Nagata, H. (1974) Clay minerals in the core samples of the mineralized zone at Niida, southern part of Odate, Akita Prefecture, Japan, with special reference of the mineralogical properties of sudoite and tosudite: J. Japan Assoc. Min. Petr. Econ. Geol, 69, 239–254.CrossRefGoogle Scholar
  28. Kodama, H. (1958) Mineralogical study on some pyrophyllite in Japan: Miner. J. (Tokyo) 2, 236–244.CrossRefGoogle Scholar
  29. Kramm, U. (1980) Sudoite in low-grade metamorphic manganese rich assemblages: N. Jahrb. Mineral. Abh. 138, 1–13.Google Scholar
  30. Ledoux, R. L. and White, J. L. (1964a) Infrared study of the OH groups in expanded kaolinite: Science 143, 244–246.CrossRefGoogle Scholar
  31. Ledoux, R. L. and White, J. L. (1964b) Infrared study of selective deuteration of kaolinite and halloysite at room temperature: Science 145, 47–49.CrossRefGoogle Scholar
  32. Matsuda, T. and Henmi, K. (1973) Hydrothermal behavior of an interstratified mineral from the Mine of Ebara, Hyogo Prefecture, Japan. (An example of change from randomly interstratified clay mineral to regular one): Nendo Kagaku (J. Clay Sci. Soc. Japan) 13, 87–94 (in Japanese).Google Scholar
  33. Matsuda, T. and Henmi, K. (1974) Syntheses of interstratified minerals from kaolin with addition of various cations: J. Mineral. Soc. Japan Spec. Issue 11, 152–161 (in Japanese).Google Scholar
  34. Matsuda, T., Yoshida, M., Hamada, Y., and Ossaka, J. (1990) Hydrothermal behaviors of dioctahedral smectites: J. Mineral. Soc. Japan Spec. Issue 19, 107–111 (in Japanese).Google Scholar
  35. Merceron, T., Inoue, A., Bouchet, A., and Meunier, A. (1988) Lithium-bearing donbasite and tosudite from Echassieres, Massif Central, France: Clays & Clay Minerals 36, 39–46.CrossRefGoogle Scholar
  36. Nishiyama, T., Shimoda, S., Shimosaka, K., and Kanaoka, S. (1975) Lithium-bearing tosudite: Clays & Clay Minerals 23, 337–342.CrossRefGoogle Scholar
  37. Oinuma, K. and Hayashi, H. (1966) Infrared study of clay minerals from Japan: J. Tokyo Univ., Gen. Education (Nat. Sci.) 6, 1–15.Google Scholar
  38. Pevear, D. R., Williams, V. E., and Mustoe, G. E. (1980) Kaolinite, smectite and K-rectorite in bentonites: Relation to coal rank at Tulameen, British Columbia: Clays & Clay Minerals 28, 241–254.CrossRefGoogle Scholar
  39. Schmidt, E. R. and Heckroodt, R. O. (1959) Adickitewith an elongated crystal habit and its dehydroxylation: Mineral. Mag. 32, 314–323.Google Scholar
  40. Schroeder, R. and Hayes, J. B. (1967) Dickite and kaolinite in Pennsylvania limestones of southeastern Kansas: Clays & Clay Minerals 16, 41–49.CrossRefGoogle Scholar
  41. Shimoda, S. (1970) A hydromuscovite from the Shakanai mine, Akita Prefecture, Japan: Clays & Clay Minerals 18, 269–274.CrossRefGoogle Scholar
  42. Shimoda, S., Nishiyama, T., Kitani, S., and Ichikawa, A. (1977) Mode of occurrence and mineralogical properties of tosudite: J. Mineral. Soc. Japan Spec. Issue 13, 103–110 (in Japanese).Google Scholar
  43. Shirozu, H. and Higashi, S. (1976) Structural investigations of sudoite and regularly interstratified sericite/sudoite: Miner. J. (Tokyo), 8, 158–170.CrossRefGoogle Scholar
  44. Shirozu, H. (1978) Chlorite minerals: in Clays and Clay Minerals of Japan, T. Sudo and S. Shimoda, eds., Elsevier, Amsterdam, 243–264.CrossRefGoogle Scholar
  45. Shirozu, H. and Ishida, K. (1982) Infrared study of some 7 Å and 14 Å layer silicates by deuteration: Miner. J. (Tokyo) 11, 161–171.CrossRefGoogle Scholar
  46. Smithson, F. and Brown, G. (1957) Dickite from sandstones in northern England and North Wales: Mineral. Mag. 31, 381–389.Google Scholar
  47. Stubičan, V. and Roy, R. (1961a) A new approach to the assignment of infrared absorption bands in layer silicates: Z. Kristallogr. 115, 200–214.CrossRefGoogle Scholar
  48. Stubičan, V. and Roy, R. (1961b) Isomorphous substitution and infrared spectra of the layer lattice silicates: Amer. Mineral. 46, 32–51.Google Scholar
  49. Sudo, T. and Kodama, H. (1957) An aluminian mixed-layer mineral of montmorillonite-chlorite: Z. Kristallogr. 190, 379–387.CrossRefGoogle Scholar
  50. Sudo, T. (1978) An outline of clays and clay minerals in Japan: in Clays and Clay Minerals of Japan, T. Sudo and S. Shimoda, eds., Elsevier, Amsterdam, 1–103.Google Scholar
  51. Takeshi, H. and Uno, Y. (1979) Notes on the formation and transformation of montmorillonites in Japan: J. Miner. Soc. Japan Spec. Issue 14, 70–77 (in Japanese).Google Scholar
  52. Tokunaga, M. (1954) Geology and ore deposits of the Kasuga mine and Akeshi mine, in the Makurazaki district, Kagoshima Prefecture: Mining Geol. 4, 205–212 (in Japanese).Google Scholar
  53. Tokunaga, M. (1955) Fundamental studies of the hydrothermal alteration at the Kasuga mine, Kagoshima Prefecture, Japan: Mining Geol. 5, 1–8 (in Japanese).Google Scholar
  54. Tokunaga, M. (1957) Nacrite-bearing kaolin clay from the Kasuga mine, Kagoshima Prefecture, Japan: Miner. J. (Tokyo) 2, 103–113.CrossRefGoogle Scholar
  55. Tomita, K. and Dozono, M. (1973) An expansible mineral having high rehydration ability: Clays & Clay Minerals 21, 185–190.CrossRefGoogle Scholar
  56. Tomita, K., Takahashi, H., and Watanabe, T. (1989) Quantification curves for mica/smectite interstratifications by X-ray powder diffraction: Clays & Clay Minerals 36, 258–262.CrossRefGoogle Scholar
  57. Tsukahara, N. (1964) Dioctahedral chlorite from the Furutobe mine, Akita Prefecture, Japan: Clay Sci. 2, 56–75.Google Scholar
  58. Tsuzuki, Y. (1976) Solubility diagrams for explaining zone sequences in bauxite, kaolin and pyrophyllite-diaspore deposits: Clays & Clay Minerals 24, 297–302.CrossRefGoogle Scholar
  59. Ueno, M. (1964) On some kaolin-roseki deposits in northern part of Hyogo Prefecture: Bull. Geol. Surv. Japan 15, 235–250 (in Japanese).Google Scholar
  60. Uno, Y. and Takeshi, H. (1982) Rock alteration and formation of clay minerals in the Ugusu silica deposit, Izu Peninsula, Japan: Clay Sci. 6, 9–42.Google Scholar
  61. Urashima, Y., Saito, M., and Sato, E. (1981) Thelwatogold ore deposits, Kagoshima Prefecture, Japan. Mining Geol., Spec. Issue 10, 1–14.Google Scholar
  62. Urashima, Y., Izawa, E., and Hedenquist, J. W. (1987) Nansatsu-type gold deposits in the Makurazaki district: in Gold Deposits and Geothermal Fields in Kyushu, Y. Urashima, ed., The Society of Mining Geologists of Japan, Tokyo, 13–22.Google Scholar
  63. Velde, B. (1969) The compositional join muscovite-pyrophyllite at moderate temperatures and pressures: Bull. Soc. Franc. Miner. Crystallogr. 92, 360–368.Google Scholar
  64. Velde, B. (1985) General phase diagram for some clay mineral assemblages: in Clay Minerals, A Physico-Chemical Explanation of their Occurrence, B. Velde, ed., Elsevier, Amsterdam, 257–359.Google Scholar
  65. Wada, K. (1967) A study of hydroxyl groups in kaolin minerals utilizing selective deuteration and infrared spectroscopy: Clay Miner. 7, 51–61.CrossRefGoogle Scholar
  66. Weir, A. H. (1965) Potassium retention in montmorillonite: Clay Miner. 6, 17–22.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1991

Authors and Affiliations

  • Motoharu Kawano
    • 1
  • Katsutoshi Tomita
    • 2
  1. 1.Department of Environmental Sciences and TechnologyFaculty of Agriculture Kagoshima UniversityKagoshimaJapan
  2. 2.Institute of Earth Sciences, Faculty of ScienceKagoshima University 1-21-35Korimoto, KagoshimaJapan

Personalised recommendations