Clays and Clay Minerals

, Volume 39, Issue 6, pp 571–579 | Cite as

Weathering of a Chromian Muscovite to Kaolinite

  • Balbir Singh
  • R. J. Gilkes


Single crystal X-ray diffraction and electron-optical analysis were used to investigate the weathering of a chromium-bearing muscovite (fuchsite). The muscovite had mostly altered to kaolinite with minor amounts of halloysite occurring between kaolinite plates. Evidence for both epitactic and topotactic growth of kaolinite from muscovite was obtained and no intermediate poorly-crystalline phases were detected. About half of the Cr in fuchsite was incorporated into kaolinite, whereas most of the Ti, Fe and Mg was lost.

Key Words

Alteration Chromian muscovite Kaolinite Topotaxy Weathering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, J. H. and Peacor, D. R. (1987) Kaolinization ofbiotite: TEM data and implications for an alteration mechanism: Amer. Mineral. 72, 353–356.Google Scholar
  2. Anand, R. R. and Gilkes, R. J. (1984) The retention of elements in mineral pseudomorphs in lateritic saprolite from granite—A weathering budget: Aust. J. Soil Res. 22, 273–282.CrossRefGoogle Scholar
  3. Banfield, J. F. and Eggleton, R. A. (1988) Transmission electron microscope study of biotite weathering: Clays & Clay Minerals 36, 47–60.CrossRefGoogle Scholar
  4. Banfield, J. F., Karabinos, P., and Veblen, D. R. (1989) Transmission electron microscopy of chloritoid: Intergrowth with the sheet silicates and reactions in metapelites. Amer. Mineral. 74, 549–564.Google Scholar
  5. Banfield, J. F. and Eggleton, R. A. (1990) Analytical transmission electron microscope studies of plagioclase, muscovite, and K-feldspar weathering: Clays & Clay Minerals 38, 77–89.CrossRefGoogle Scholar
  6. Gandolfi, G. (1967) Discussion upon methods to obtain X-ray powder patterns from a single crystal: Mineral. Petrogr. Acta 13, 67–74.Google Scholar
  7. Gilkes, R. J. and Suddhiprakarn, A. (1979) Biotite alteration in deeply weathered granite. II. The oriented growth of secondary minerals: Clays & Clay Minerals 27, 361–367.CrossRefGoogle Scholar
  8. Gilkes, R. J., Anand, R. R., and Suddhiprakarn, A. (1986) How the microfabric of soils may be influenced by the structure and chemical composition of parent minerals: Trans. Int. Soil Sci. Conf., Hamburg., 1–14.Google Scholar
  9. Herbillon, A. J., Mestdagh, M. M., Vielvoye, L., and Derouane, E. G. (1976) Iron in kaolinite with special reference to kaolinite from tropical soils: Clay Miner. 11, 201–219.CrossRefGoogle Scholar
  10. Loughnan, F. C. (1969) Chemical Weathering of the Silicate Minerals: American Elsevier, New York, 154 pp.Google Scholar
  11. MacEwan, D. M. C. (1961) Montmorillonite minerals: in The X-ray Identification and Crystal Structures of Clay Minerals, G. Brown, ed., Mineralogical Society, London, 143–208.Google Scholar
  12. Maksimovic, Z., White, J. L., and Logar, M. (1981) Chromium-bearing dickite and chromium-bearing kaolinite from Telsic, Yugoslavia: Clays & Clay Minerals 29, 213–218.CrossRefGoogle Scholar
  13. Matzat, E. (1978) Chromium crystal chemistry: in Handbook of Geochemistry, K. H. Wedepohl, ed., 24-A-l, Springer-Verlag, Berlin.Google Scholar
  14. Meunier, A. and Velde, B. (1979) Weathering mineral facies in altered granites: The importance of local small-scale equilibria: Mineral. Mag. 43, 261–268.CrossRefGoogle Scholar
  15. Milnes, A. R. and Fitzpatrick, R. W. (1989) Titanium and zirconium minerals: in Minerals in Soil Environments, J. B. Dixon and S. B. Weed, eds., Soil Science Soc. America, Madison, Wisconsin.Google Scholar
  16. Rengasamy, P., Krishna Murti, G. S. R., and Sarma, V. A. K. (1975) Isomorphous substitution ofiron for aluminum in some soil kaolinites: Clays & Clay Minerals 23, 211–214.CrossRefGoogle Scholar
  17. Shieh, Yuch-Ning and Maksimovic, Z. (1982) Oxygen isotope study of chromium-bearing kaolinite and dickite from Telsic, Yugoslavia: Clays & Clay Minerals 30, 318–320.CrossRefGoogle Scholar
  18. Spurr, A. R. (1969) A low viscosity epoxy resin embedding medium for electron microscopy: J. Ultrastruct. Res. 26, 31–43.CrossRefGoogle Scholar
  19. Veblen, D. R. (1983) Microstructures and mixed layering in intergrown wonesite, chlorite, talc, biotite and kaolinite: Amer. Mineral. 68, 566–580.Google Scholar
  20. Veblen, D. R. and Buseck, P. R. (1980) Chain-width order and disorder in biopyriboles: Amer. Mineral. 64, 687–700.Google Scholar
  21. Weaver, C. E. and Pollard, L. D. (1973) The Chemistry of Clay Minerals. Developments in Sedimentology 15, Elsevier, Amsterdam.Google Scholar
  22. Williams, I. R. (1975) South Western province: in Geology of Western Australia. West. Australian Geol. Survey, Mem. 2, 65–69.Google Scholar
  23. Yau, Y. C., Anovitz, L. M., Essene, E. J., and Peacor, D. R. (1984) Phlogopite-chlorite reaction mechanisms and physical conditions during retrograde reaction in the marble formation, Franklin, New Jersey: Contrib. Mineral. Petrol. 88, 299–308.CrossRefGoogle Scholar

Copyright information

© Clay Minerals Society 1961

Authors and Affiliations

  • Balbir Singh
    • 1
  • R. J. Gilkes
    • 1
  1. 1.Soil Science and Plant Nutrition, School of AgricultureThe University of Western AustraliaNedlandsAustralia

Personalised recommendations