Clays and Clay Minerals

, Volume 39, Issue 6, pp 561–570 | Cite as

Synthetic Allophane and Layer-Silicate Formation in SiO2-Al2O3-FeO-Fe2O3-MgO-H2O Systems at 23°C and 89°C in a Calcareous Environment

  • V. C. Farmer
  • G. S. R. Krishnamurti
  • P. M. Huang


Solutions containing AlCl3 and Si(OH)4 (concentrations ≤ 1.5 mM with molar Si:Al ratios of 1:2, 1:1 and 3:1) and FeCl2 (0, 0.5 and 1.0 mM) were adjusted to pH 8 with Ca(OH)2, and incubated at 23°C and 89°C without exclusion of air in the presence of CaCO3 for 8–12 weeks. The products were characterized by infrared spectroscopy and X-ray diffraction. Systems with 3:1 and 1:1 Si:Al ratios without Fe gave hydrous feldspathoids at 23° and 89°C. Systems with 3:1 Si:Al ratios containing Fe gave aluminous nontronites at 89°C and noncrystalline, nontronite-like products at 23°C. Systems with 1:1 Si:Al ratios with added Fe gave Fe(III)-substituted hydrous feldspathoids at 23°C. At 89°C, the system with 1:1 Si:Al ratios and 0.5 mM Fe produced a “protohalloysite,” while that with 1.0 mM Fe gave a poorly ordered nontronite-like layer silicate. In systems with 1:2 Si:Al ratios, the formation of “protoimogolite” at 23°C was little affected by additions of Fe. At 89°C, the “protoimogolite” decomposed to boehmite and poorly-ordered layer silicate phases. Inclusion of 1 mM MgCl2 in the above systems had no effect on the products at 23°C, but at 89°C produced saponites and a mixed layer saponite-chlorite in the 3:1 Si:Al systems, and saponite-like layer structures in the 1:1 and 1:2 Si:Al systems.

Key Words

Allophane Hisingerite Hydrous feldspathoid Nontronite Poorly-ordered layer silicates “Protoimogolite,” Saponite Synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baes, C. F. and Mesmer, R. E. (1976) The Hydrolysis of Cations: John Wiley & Sons, New York.Google Scholar
  2. Brindley, G. W. (1980) Order-disorder in clay mineral structures: in Crystal Structures of Clay Minerals and Their X-ray Identification, G. W. Brindley and G. Brown, eds., Mineralogical Society, London.CrossRefGoogle Scholar
  3. Decarreau, A. (1981) Crystallogenèse à basse température de smectites trioctahedriques par vieillessement de copré-cipités silicometallique: Compt. Rend. Sci. Paris, Ser. II 292, 61–64.Google Scholar
  4. Decarreau, A. and Bonnin, D. (1986) Synthesis and crystallogenesis at low temperature of Fe(III) smectites by evolution of coprecipitated gels. Experiments in partially reducing conditions: Clay Miner. 21, 861–867.CrossRefGoogle Scholar
  5. Dougan, W. K. and Wilson, A. L. (1974) Absorptiometric determination of aluminum in water. Comparison of some chromogenic reagents and the development of an improved method: Analyst (London) 99, 413–430.CrossRefGoogle Scholar
  6. Duchaufour, P. (1982) Pedology: Pedogenesis and Classification: Allen & Unwin, London.CrossRefGoogle Scholar
  7. Farmer, V. C., Fraser, A. R., and Tait, J. M. (1979) Characterization of the chemical structures of natural and synthetic aluminosilicate gels and sols by infrared spectrometry: Geochim. Cosmochim. Acta 43, 1417–1420.CrossRefGoogle Scholar
  8. Farmer, V. C., McHardy, W. J., Palmieri, F., Violante, A., and Violante, P. (1991) Synthetic allophanes formed in calcareous environments. Nature, conditions of formation, and transformations: Soil Sci. Soc. Am. J. (in press).Google Scholar
  9. Goodman, B. A., Russell, J. D., and Fraser, A. R. (1976) A Mössbauer and IR spectroscopic study of the structure of nontronite: Clays & Clay Minerals 24, 53–59.CrossRefGoogle Scholar
  10. Harder, H. (1976) Nontronite synthesis at low temperature: Chem. Geol. 18, 169–180.CrossRefGoogle Scholar
  11. Krishnamurti, G. S. R. and Huang, P. M. (1991) Kinetics of Fe(II) oxygenation and the nature of hydrolytic products as influenced by ligands. V. C. Farmer and Y. Tardy, eds., Proc. 9th Int. Clay Conf. (Strasbourg, France) (in press).Google Scholar
  12. McBride, M. B., Farmer, V. C., Russell, J. D., Tait, J. M., and Goodman, B. A. (1984) Iron substitution in aluminosilicate sols synthesized at low pH: Clay Miner. 19, 1–8.CrossRefGoogle Scholar
  13. Morrison, I. R. and Wilson, A. L. (1963) The absorptimetric determination of silicon in water, Part II: Analyst (London) 88, 100–104.CrossRefGoogle Scholar
  14. Parfitt, R. L. and Kimble, J. M. (1989) Conditions for formation of allophanes in soils: Soil Sci. Soc. Am. J. 53, 971–977.CrossRefGoogle Scholar
  15. Russell, J. D. (1987) Infrared methods: in A Handbook of Determinative Methods in Clay Mineralogy, M. J. Wilson, ed., Blackie, Glasgow and Chapman and Hall, New York, 133–173.Google Scholar
  16. Shayan, A. (1984) Hisingerite material from a basalt quarry near Geelong, Victoria, Australia: Clays & Clay Minerals 32, 272–278.CrossRefGoogle Scholar
  17. Wada, K., Wilson, M., Kakuto, Y., and Wada, S.-I. (1988) Synthesis and characterization of a hollow spherical form of monolayer aluminosilicate: Clays & Clay Minerals 36, 11–18.CrossRefGoogle Scholar
  18. Whelan, J. A. and Goldich, S. S. (1961) New data for hisingerite and neotocite: Amer. Mineral. 46, 1412–1423.Google Scholar
  19. Wilson, M. J. (1987) X-ray powder diffraction methods: in A Handbook of Determinative Methods in Clay Mineralogy, M.J. Wilson, ed., Blackie, Glasgow and Chapman and Hall, New York, 26–98.Google Scholar

Copyright information

© The Clay Minerals Society 1991

Authors and Affiliations

  • V. C. Farmer
    • 1
  • G. S. R. Krishnamurti
    • 2
  • P. M. Huang
    • 2
  1. 1.The Macaulay Land Use Research InstituteAberdeenUK
  2. 2.Department of Soil ScienceUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations