Advertisement

Clays and Clay Minerals

, Volume 39, Issue 3, pp 270–280 | Cite as

“Dealumination” and Aluminum Intercalation of Vermiculite

  • Jean-Baptiste D’Espinose de la Caillerie
  • José J. Fripiat
Article

Abstract

Dealumination of vermiculite was carried out using (NH4)2SiF6 solutions. The dealuminated products were studied by high-resolution solid state 29Si and 27Al nuclear magnetic resonance. A decrease in the cation-exchange capacity (CEC) resulted from the partial removal of Al from the tetrahedral layer, which decreased the framework negative charge, and from the partial replacement of Mg by Al in the octahedral layer, which increased its positive charge contribution. The lowest CEC was obtained by swelling the structure with butyl-ammonium prior to the reaction with (NH4)2SiF6. Thus, CECs in the range observed for beidellite were measured; however, the lowest (Al/Si)IV ratio was still more than twice as high as in beidellite. In addition, the dealumination reaction yielded noncrystalline silica as a by-product.

In contact with a solution of Al hydroxypolymer (Al13), the dealuminated vermiculite showed no 18-Å reflection characteristic of Al13-intercalated smectite; instead it showed an ill-defined interstratification. For some samples, however, a significant increase in the specific surface area (as much as 230 m2/g) was observed, suggesting that an intercalation of Al moieties did occur. The 27Al resonance spectra of the intercalated structure showed at least two components in octahedral coordination. On thermal activation, a resonance line attributable to pentacoordinated Al was observed.

Key Words

Aluminum Cation-exchange capacity Dealumination Intercalation Nuclear magnetic resonance Vermiculite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angino, E. E. and Billings, G. K. (1972) Atomic Absorption Spectrometry in Geology: Elsevier, Amsterdam, 96–97.Google Scholar
  2. Bain, D. C. and Smith, B. F. L. (1987) Chemical analysis: in A Handbook of Determinative Methods in Clay Mineralogy, M. J. Wilson, ed., Chapman and Hall, New York, 258–260.Google Scholar
  3. Bottero, J.-Y., Marchai, J. P., Poirier, J.-E., Cases, J., and Fiessinger, F. (1982) Etude par RMN de l’27A1 des solutions diluées de chlorure d’aluminium partiellement neutralisées: Bull. Soc. Chim. Fr. 11-12, 439–444.Google Scholar
  4. Breck, D. W., Blass, H., and Skeels, G. W. (1985) Silicon substituted zeolite compositions and process for preparing same: U.S. Patent 4,503,023, 27 pp.Google Scholar
  5. de la Calle, C. and Suquet, H. (1988) Vermiculite: in Hydrous Phyllosilicates, Reviews in Mineralogy 19, W. Bailey, ed., Mineralogical Society of America, Washington, D.C., 455–496.CrossRefGoogle Scholar
  6. Deng, Z., Lambert, J.-F., and Fripiat, J. J. (1989) Pillaring puckered layer silicates: Chemistry of Materials 1, 640–650.CrossRefGoogle Scholar
  7. Farrah, G. H. and Moss, M. L. (1966) Aluminum: in Treatise on Analytical Chemistry, Part II, Section A, Volume 4., I. M. Kolthoff, P. J. Elving, and E. B. Sandell, eds., Wiley, New York, 405–406.Google Scholar
  8. Herrero, C. P. (1985) Monte Carlo simulation and calculation of electrostatic energies in the analysis of Si-Al distribution in micas: in Proc. Int. Clay Conf, Denver, 1985, L. G. Schultz, H. van Olphen, and F. A. Mumpton, eds., The Clay Minerals Society, Bloomington, Indiana, 24–30.Google Scholar
  9. Laperche, V., Lambert, J.-F., Prost, R., and Fripiat, J. J. (1990) High resolution solid-state NMR of exchangeable cations in the interlayer surface of a swelling mica: 23Na, 111Cs and 133Cd vermiculites: J. Phys. Chem. 94, 8821–8831.CrossRefGoogle Scholar
  10. Linke, W. F. (1965) Solubilities: Inorganic and Metal-Organic Compounds, Vol. 2: American Chemical Society, Washington, D.C., 1914 pp.Google Scholar
  11. López Gonzalez, J. D. and Barrales Rienda, J. M. (1972) Caracterizacion y propiedades de una vermiculita de Benahavis (Malaga): Anales de Quimica 68, 247–262.Google Scholar
  12. Man, P.P., Peltre, M.J., and Barthomeuf, D. (1990) Nuclear magnetic resonance of the dealumination of an amorphous silica-alumina catalyst: J. Chem. Soc. Faraday Trans. 86, 1599–1602.CrossRefGoogle Scholar
  13. Miyake, M., Komarneni, S., and Roy, R. (1987) Dealumination of zeolites and clay minerals with SiCl4, or (NH4)2SiF6: Clay Miner. 22, 367–371.CrossRefGoogle Scholar
  14. Plee, D. (1984) Synthèse et caractérisation des composés d’insertion de smectites: Ph.D. Thesis, Université d’Orléans, Orléans, France, 109 pp.Google Scholar
  15. Plee, D., Borg F., Gatineau, L., and Fripiat, J.J. (1985) High-resolution solid-state 27Al and 29Si nuclear magnetic resonance study of pillared clays: J. Amer. Chem. Soc. 107, 2363–2369.CrossRefGoogle Scholar
  16. Plee, D., Gatineau, L., and Fripiat, J. J. (1987) Pillaring processes of smectites with and without tetrahedral substitution: Clays & Clay Minerals 35, 81–88.CrossRefGoogle Scholar
  17. Rausell-Colom, J. A., Fernandez, M., Serratosa, J. M., Alcover, J. F., and Gatineau, L. (1980) Organisation de l’espace interlamellaire dans les vermiculites monocouches et anhydres: Clay Miner. 15, 37–57.CrossRefGoogle Scholar
  18. Schutz A., Stone, E. E., Poncelet, G., and Fripiat, J. J. (1987) Preparation and characterization of tridimensional zeolitic structures obtained from synthetic beidellite and hydroxy-aluminum solutions: Clays & Clay Minerals 35, 251–261.CrossRefGoogle Scholar
  19. Thompson, K. C. and Reynolds, R. J. (1978) Atomic Absorption Spectroscopy: A Practical Guide: Wiley, New York, 319 pp.Google Scholar

Copyright information

© The Clay Minerals Society 1991

Authors and Affiliations

  • Jean-Baptiste D’Espinose de la Caillerie
    • 1
  • José J. Fripiat
    • 1
  1. 1.Department of Chemistry and Laboratory for Surface StudiesUniversity of Wisconsin-MilwaukeeMilwaukee, WisconsinUSA

Personalised recommendations