Advertisement

Clays and Clay Minerals

, Volume 37, Issue 5, pp 493–496 | Cite as

Apparent Dissolution During Ultrasonic Dispersion of Allophanic Soils and Soil Fractions

  • Mauricio Escudey
  • María de la Luz Mora
  • Patricia Díaz
  • Gerardo Galindo
Note

Key words

Allophane Dissolution Soil Ultrasonic dispersion Zeta potential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Escudey, M., Ervin, J., and Galindo, G. (1986) Effect of iron oxide dissolution treatment on the isoelectric point of allophanic soils: Clays & Clay Minerals 34, 108–110.CrossRefGoogle Scholar
  2. Escudey, M. and Galindo, G. (1983) Effect of iron oxide coatings on electrophoretic mobility and dispersion of al-lophane: J. Colloid Interface Sci. 93, 78–83.CrossRefGoogle Scholar
  3. Galindo, G. (1974) Electric charges, sorption of phosphate and cation-exchange equilibria in Chilean Dystrandepts: Ph.D. thesis, Univ. California, Riverside, California, 4–52.Google Scholar
  4. Gil-Llambias, F. J. and Escudey-Castro, A. M. (1982) Use of zero point charge measurements in determining the apparent surface coverage of Molybdene in MoO3/γAl2O3 catalysts: J. Chem. Soc. Chem. Commun., 478–479.Google Scholar
  5. Goldberg, S. and Glaubig, R. A. (1987) Effect of saturating cation, pH, and aluminum and iron oxide on the flocculation ofkaolinite and montmorillonite: Clays & Clay Minerals 35, 220–227.CrossRefGoogle Scholar
  6. Hinds, A. A. and Lowe, L. E. (1980) Dispersion and dissolution effects during ultrasonic dispersion of Gleysolic soils in water and in electrolytes: Can. J. Soil Sci. 60, 329–335.CrossRefGoogle Scholar
  7. Hunter, R. J. (1981) Zeta Potential in Colloid Science: Principles and Applications: Academic Press, London, 59–124.CrossRefGoogle Scholar
  8. Kunze, G. W. (1965) Pretreatment for mineralogical analysis: in Methods of Soil Analysis. Part I, Agronomy, Vol. 9, C. A. Black, ed., Amer. Soc. Agron., Madison, Wisconsin, 568–577.Google Scholar
  9. Manley, E. P., Chesworth, W., and Evans, L. J. (1987) The solution chemistry of podzolic soils from the eastern Canadian shield: A thermodynamic interpretation of the mineral phases controlling soluble AP+ and H4SiO4: J. Soil Sci. 38, 39–51.CrossRefGoogle Scholar
  10. McKeague, J. A. and Schuppli P. A. (1982) Changes in concentration of iron and aluminium in pyrophosphate extracts of soil and composition of sediment resulting from ultracentrifugation in relation to spodic horizon criteria: Soil Sci. 134, 265–270.CrossRefGoogle Scholar
  11. Mehra, O. P. and Jackson, M. L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate: in Clays and Clay Minerals, Proc. 7th Natl. Conf., Washington D.C., 1958, Ada Swineford, ed., Pergamon Press, New York, 317–327.Google Scholar
  12. Stumm, W. and Morgan, J. J. (1981) Aquatic Chemistry: Wiley, New York, 599–684.Google Scholar
  13. Tadros, Th. F. and Lyklema, J. (1968) Adsorption of potential-determining ions at the silica-aqueous electrolyte interface and the role of some cations: J. Electroanal. Chem. 17, 267–275.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1989

Authors and Affiliations

  • Mauricio Escudey
    • 1
  • María de la Luz Mora
    • 1
  • Patricia Díaz
    • 1
  • Gerardo Galindo
    • 1
  1. 1.Departamento de Química Facultad de CienciaUniversidad de Santiago de ChileSantiagoChile

Personalised recommendations