Advertisement

Clays and Clay Minerals

, Volume 37, Issue 5, pp 451–458 | Cite as

Influence of Mn2+ and pH on the Formation of Iron Oxides from Ferrous Chloride and Ferrous Sulfate Solutions

  • G. S. R. Krishnamurti
  • P. M. Huang
Article

Abstract

The influence of Mn2+ on the formation of Fe oxides at pHs of 6.0 and 8.0 and varying Mn/Fe molar ratios (0, 0.1, 1.0, and 10.0) in the FeCl2-NH4OH and FeSO4-NH4OH systems was studied by X-ray powder diffraction (XRD), infrared absorption, transmission electron microscopic, and chemical analyses. In the absence of Mn2+, lepidocrocite (γ-FeOOH) and maghemite (γ-Fe2O3) were the crystalline species formed at pHs of 6.0 and 8.0, respectively, in the FeCl2 system, whereas lepidocrocite and goethite (α-FeOOH) and lepidocrocite were the crystalline species formed at pHs of 6.0 and 8.0, respectively, in the FeSO4 system. The amount of Mn coprecipitated with Fe (as much as 8.1 mole % in the FeCl2 system and 15.0 mole % in the FeSO4 system) increased as the initial solution Mn/Fe molar ratio increased from 0 to 10.0, resulting in the perturbation of the crystallization processes of the hydrolytic products of Fe formed. At pH 6.0, the perturbation led to the formation of poorly ordered lepidocrocite, as reflected in the increasing broadening of its characteristic peaks in the XRD patterns. At pH 8.0, poorly ordered iepidocrocite and a honessite-like mineral (Mn-Fe-SO4-H2O) formed in the FeCl2 and FeSO4 systems, respectively.

Key Words

Goethite Infrared spectroscopy Iron oxides Lepidocrocite Maghemite Manganese Synthesis X-ray powder diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baes, C. F. and Mesmer, R. E. (1976) The Hydrolysis of Canons: Wiley, New York, 489 pp.Google Scholar
  2. Brady, K. S., Bigham, J. M., Jaynes, W. F., and Logan, T. J. (1986) Influence of sulfate on Fe-oxide formation: Comparisons with a stream receiving acid mine drainage: Clays & Clay Minerals 34, 266–274.CrossRefGoogle Scholar
  3. Chao, T. T. and Zhou, L. (1983) Extraction techniques for selective dissolution of amorphous iron oxides from soils and sediments: Soil Sci. Soc. Amer. J. 47, 225–232.CrossRefGoogle Scholar
  4. Cornell, R. M. (1985) Effect of simple sugars on the alkaline transformation of ferrihydrite into goethite and hematite: Clays & Clay Minerals 33, 219–227.CrossRefGoogle Scholar
  5. Cornell, R. M. and Giovanoli, R. (1987) Effect of manganese on the transformation of ferrihydrite into goethite and ja-cobsite in alkaline media: Clays & Clay Minerals 35, 11–20.CrossRefGoogle Scholar
  6. Cornell, R. M. and Giovanoli, R. (1988) The influence of copper on the transformation of ferrihydrite (5Fe2Cy⊙9H2O) into crystalline products in alkaline media: Polyhedron 7, 385–391.CrossRefGoogle Scholar
  7. Cornell, R. M. and Schwertmann, U. (1979) Influence of organic anions on the crystallization of ferrihydrite: Clays & Clay Minerals 27, 402–410.CrossRefGoogle Scholar
  8. Detourney, P. J., Ghodsi, M., and Derie, R. (1975) Influence de la temperature et de la presence des Ions strangers sur la cinetique et la mecanisme de formation de la goethite en milieu aquex: Z. Anorg. Allg. Chemie 412, 184–192.CrossRefGoogle Scholar
  9. Farrell, D. M. (1972) Infrared absorption in the oxidation of magnetite to maghemite and hematite. Mines Br. Inv. Rep. IR 72-18, Dept. Energy, Mines and Resources, Canada, 40 pp.Google Scholar
  10. Fischer, W. R. and Schwertmann, U. (1975) The formation of hematite from amorphous iron(III) hydroxide: Clays & Clay Minerals 23, 33–37.CrossRefGoogle Scholar
  11. Gadsden, J. A. (1975) Infrared Spectra of Minerals and Related Compounds: Butterworths, London, 297 pp.Google Scholar
  12. Krishnamurti, G. S. R. and Huang, P. M. (1987) The catalytic role of birnessite in the transformation of iron: Can. J. Soil Sci. 67, 533–543.CrossRefGoogle Scholar
  13. Krishnamurti, G. S. R. and Huang, P. M. (1988) Influence of manganese oxide minerals on the formation of iron oxides: Clays & Clay Minerals 36, 467–475.CrossRefGoogle Scholar
  14. Nakamoto, K. (1970) Infrared Spectra of Inorganic and Coordination Compounds: Wiley, New York, 338 pp.Google Scholar
  15. Schulze, D. G. and Schwertmann, U. (1984) The influence of aluminium on iron oxides. X. Properties of Al-substituted goethites: Clay Miner. 19, 521–529.CrossRefGoogle Scholar
  16. Schwertmann, U. (1985) The effect of pedogenetic environments on iron oxide minerals: Adv. Soil Sci. I, 171–200.Google Scholar
  17. Schwertmann, U., Fitzpatrick, R. W., Taylor, R. M., and Lewis, D. G. (1979) The influence of aluminum on iron oxides. II. Preparation and properties of Al-substituted hematites: Clays & Clay Minerals 27, 105–112.CrossRefGoogle Scholar
  18. Schwertmann, U., Kodama, H., and Fischer, W. R. (1986) Mutual interactions between organics and iron oxides: in Interactions of Soil Minerals with Natural Organics and Microbes, P. M. Huang and M. Schnitzer, eds., Soil Sci. Soc. Amer., Madison, Wisconsin, 223–250.Google Scholar
  19. Schwertmann, U. and Taylor, R. M. (1977) Iron oxides: in Minerals in Soil Environments, J. B. Dixon and S. B. Weed, eds., Soil Sei. Soc. Amer., Madison, Wisconsin, 145–180.Google Scholar
  20. Stiers, W. and Schwertmann, U. (1985) Evidence for manganese substitution in synthetic goethite: Geochim. Cosmochim. Acta 49, 1909–1911.CrossRefGoogle Scholar
  21. Taylor, R. M. and Schwertmann, U. (1974) Maghemite in soils and its origin. II. Maghemite synthesis at ambient temperature and pH 7: Clay Miner. 10, 299–310.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 1989

Authors and Affiliations

  • G. S. R. Krishnamurti
    • 1
  • P. M. Huang
    • 1
  1. 1.Department of Soil ScienceUniversity of SaskatchewanSaskatoon, SaskatchewanCanada

Personalised recommendations